Publicação:
Multivariate calibrations in gas chromatographic profiles for prediction of several physicochemical parameters of Brazilian commercial gasoline

dc.contributor.authorFlumignan, Danilo Luiz [UNESP]
dc.contributor.authorFerreira, Fabricio de Oliveira [UNESP]
dc.contributor.authorTininis, Aristeu Gomes [UNESP]
dc.contributor.authorOliveira, Jose Eduardo de [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-20T14:21:12Z
dc.date.available2014-05-20T14:21:12Z
dc.date.issued2008-05-15
dc.description.abstractSeveral Brazilian commercial gasoline physicochemical parameters, such as relative density, distillation curve (temperatures related to 10%, 50% and 90% of distilled volume, final boiling point and residue), octane numbers (motor and research octane number and anti-knock index), hydrocarbon compositions (olefins, aromatics and saturates) and anhydrous ethanol and benzene content was predicted from chromatographic profiles obtained by flame ionization detection (GC-FID) and using partial least square regression (PLS). GC-FID is a technique intensively used for fuel quality control due to its convenience, speed, accuracy and simplicity and its profiles are much easier to interpret and understand than results produced by other techniques. Another advantage is that it permits association with multivariate methods of analysis, such as PLS. The chromatogram profiles were recorded and used to deploy PLS models for each property. The standard error of prediction (SEP) has been the main parameter considered to select the "best model". Most of GC-FID-PLS results, when compared to those obtained by the Brazilian Government Petroleum, Natural Gas and Biofuels Agency - ANP Regulation 309 specification methods, were very good. In general, all PLS models developed in these work provide unbiased predictions with lows standard error of prediction and percentage average relative error (below 11.5 and 5.0, respectively). (C) 2007 Elsevier B.V. All rights reserved.en
dc.description.affiliationSão Paulo State Univ, Ctr Monitoring & Res Qual Fuels Crude Oil & Deriv, CEMPEQC, Dept Organ Chem,Inst Chem, BR-14800900 Araraquara, SP, Brazil
dc.description.affiliationUnespSão Paulo State Univ, Ctr Monitoring & Res Qual Fuels Crude Oil & Deriv, CEMPEQC, Dept Organ Chem,Inst Chem, BR-14800900 Araraquara, SP, Brazil
dc.format.extent53-60
dc.identifierhttp://dx.doi.org/10.1016/j.chemolab.2007.12.003
dc.identifier.citationChemometrics and Intelligent Laboratory Systems. Amsterdam: Elsevier B.V., v. 92, n. 1, p. 53-60, 2008.
dc.identifier.doi10.1016/j.chemolab.2007.12.003
dc.identifier.issn0169-7439
dc.identifier.lattes9352141379363877
dc.identifier.urihttp://hdl.handle.net/11449/26339
dc.identifier.wosWOS:000256869800006
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofChemometrics and Intelligent Laboratory Systems
dc.relation.ispartofjcr2.701
dc.relation.ispartofsjr0,672
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.subjectgas chromatographyen
dc.subjectpartial least squares regressionen
dc.subjectBrazilian commercial gasolineen
dc.subjectquality controlen
dc.titleMultivariate calibrations in gas chromatographic profiles for prediction of several physicochemical parameters of Brazilian commercial gasolineen
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
dspace.entity.typePublication
unesp.author.lattes9352141379363877
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Química, Araraquarapt
unesp.departmentQuímica Orgânica - IQARpt

Arquivos

Licença do Pacote

Agora exibindo 1 - 2 de 2
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição:
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: