Rice leaf disease detection using the Stretched Neighborhood Effect Color to Grayscale method and Machine Learning
| dc.contributor.author | Aguirre-Rodríguez, Elen Yanina | |
| dc.contributor.author | Gamboa, Alexander Alberto Rodriguez | |
| dc.contributor.author | Rodríguez, Elias Carlos Aguirre [UNESP] | |
| dc.contributor.author | Santos-Fernández, Juan Pedro | |
| dc.contributor.author | Nascimento, Luiz Fernando Costa [UNESP] | |
| dc.contributor.author | da Silva, Aneirson Francisco [UNESP] | |
| dc.contributor.author | Marins, Fernando Augusto Silva [UNESP] | |
| dc.contributor.institution | Ciudad Universitaria | |
| dc.contributor.institution | Universidad César Vallejo | |
| dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
| dc.date.accessioned | 2025-04-29T18:57:27Z | |
| dc.date.issued | 2025-01-01 | |
| dc.description.abstract | The emergence of Machine Learning (ML) technologies and their integration into agriculture has demonstrated a significant impact on disease detection in crops, enabling continuous monitoring and enhancing risk planning and management. This study applied image processing techniques such as thresholding, gamma correction, and the Stretched Neighborhood Effect Color to Grayscale (SNECG) method, alongside ML, to develop a predictive model for identifying five types of rice diseases. The ML techniques used included Logistic Regression, Multilayer Perceptron, Support Vector Machines, Decision Trees, and Random Forests (RF). Hyperparameters were optimized and evaluated through 5-fold cross-validation. In the results, the SNECG method successfully converted images to grayscale, capturing essential features of lesions on rice leaves. The ML models developed with these techniques showed evaluation metrics exceeding 80%, with the RF model (precision = 88.31%) demonstrating superior performance. Additionally, the RF model was integrated into an interface designed for agricultural decision-making. The practical application of the developed model could significantly improve the ability to detect and manage diseases in rice crops. | en |
| dc.description.affiliation | Facultad de Ingeniería Universidad Nacional de Trujillo Ciudad Universitaria, Av. Juan Pablo II s/n | |
| dc.description.affiliation | Programa de Investigación Formativa e Integridad Científica Universidad César Vallejo | |
| dc.description.affiliation | Department of Production São Paulo State University (UNESP), Guaratinguetá | |
| dc.description.affiliationUnesp | Department of Production São Paulo State University (UNESP), Guaratinguetá | |
| dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
| dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
| dc.description.sponsorshipId | CAPES: CAPES - 001 | |
| dc.description.sponsorshipId | CNPq: CNPq - 304197/2021-1 | |
| dc.format.extent | 123-136 | |
| dc.identifier | http://dx.doi.org/10.17268/sci.agropecu.2025.011 | |
| dc.identifier.citation | Scientia Agropecuaria, v. 16, n. 1, p. 123-136, 2025. | |
| dc.identifier.doi | 10.17268/sci.agropecu.2025.011 | |
| dc.identifier.issn | 2306-6741 | |
| dc.identifier.issn | 2077-9917 | |
| dc.identifier.scopus | 2-s2.0-85216847337 | |
| dc.identifier.uri | https://hdl.handle.net/11449/301182 | |
| dc.language.iso | eng | |
| dc.relation.ispartof | Scientia Agropecuaria | |
| dc.source | Scopus | |
| dc.subject | disease classification | |
| dc.subject | disease detection | |
| dc.subject | image processing | |
| dc.subject | leaf disease | |
| dc.subject | machine learning | |
| dc.subject | random forest | |
| dc.title | Rice leaf disease detection using the Stretched Neighborhood Effect Color to Grayscale method and Machine Learning | en |
| dc.type | Artigo | pt |
| dspace.entity.type | Publication | |
| relation.isOrgUnitOfPublication | a4071986-4355-47c3-a5a3-bd4d1a966e4f | |
| relation.isOrgUnitOfPublication.latestForDiscovery | a4071986-4355-47c3-a5a3-bd4d1a966e4f | |
| unesp.author.orcid | 0000-0002-3829-4118[1] | |
| unesp.author.orcid | 0000-0002-0102-4253[2] | |
| unesp.author.orcid | 0000-0003-1120-1708[3] | |
| unesp.author.orcid | 0000-0002-8882-9256[4] | |
| unesp.author.orcid | 0000-0001-9793-750X[5] | |
| unesp.author.orcid | 0000-0002-2215-0734[6] | |
| unesp.author.orcid | 0000-0001-6510-9187[7] | |
| unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Engenharia e Ciências, Guaratinguetá | pt |

