Logo do repositório

Rice leaf disease detection using the Stretched Neighborhood Effect Color to Grayscale method and Machine Learning

dc.contributor.authorAguirre-Rodríguez, Elen Yanina
dc.contributor.authorGamboa, Alexander Alberto Rodriguez
dc.contributor.authorRodríguez, Elias Carlos Aguirre [UNESP]
dc.contributor.authorSantos-Fernández, Juan Pedro
dc.contributor.authorNascimento, Luiz Fernando Costa [UNESP]
dc.contributor.authorda Silva, Aneirson Francisco [UNESP]
dc.contributor.authorMarins, Fernando Augusto Silva [UNESP]
dc.contributor.institutionCiudad Universitaria
dc.contributor.institutionUniversidad César Vallejo
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2025-04-29T18:57:27Z
dc.date.issued2025-01-01
dc.description.abstractThe emergence of Machine Learning (ML) technologies and their integration into agriculture has demonstrated a significant impact on disease detection in crops, enabling continuous monitoring and enhancing risk planning and management. This study applied image processing techniques such as thresholding, gamma correction, and the Stretched Neighborhood Effect Color to Grayscale (SNECG) method, alongside ML, to develop a predictive model for identifying five types of rice diseases. The ML techniques used included Logistic Regression, Multilayer Perceptron, Support Vector Machines, Decision Trees, and Random Forests (RF). Hyperparameters were optimized and evaluated through 5-fold cross-validation. In the results, the SNECG method successfully converted images to grayscale, capturing essential features of lesions on rice leaves. The ML models developed with these techniques showed evaluation metrics exceeding 80%, with the RF model (precision = 88.31%) demonstrating superior performance. Additionally, the RF model was integrated into an interface designed for agricultural decision-making. The practical application of the developed model could significantly improve the ability to detect and manage diseases in rice crops.en
dc.description.affiliationFacultad de Ingeniería Universidad Nacional de Trujillo Ciudad Universitaria, Av. Juan Pablo II s/n
dc.description.affiliationPrograma de Investigación Formativa e Integridad Científica Universidad César Vallejo
dc.description.affiliationDepartment of Production São Paulo State University (UNESP), Guaratinguetá
dc.description.affiliationUnespDepartment of Production São Paulo State University (UNESP), Guaratinguetá
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdCAPES: CAPES - 001
dc.description.sponsorshipIdCNPq: CNPq - 304197/2021-1
dc.format.extent123-136
dc.identifierhttp://dx.doi.org/10.17268/sci.agropecu.2025.011
dc.identifier.citationScientia Agropecuaria, v. 16, n. 1, p. 123-136, 2025.
dc.identifier.doi10.17268/sci.agropecu.2025.011
dc.identifier.issn2306-6741
dc.identifier.issn2077-9917
dc.identifier.scopus2-s2.0-85216847337
dc.identifier.urihttps://hdl.handle.net/11449/301182
dc.language.isoeng
dc.relation.ispartofScientia Agropecuaria
dc.sourceScopus
dc.subjectdisease classification
dc.subjectdisease detection
dc.subjectimage processing
dc.subjectleaf disease
dc.subjectmachine learning
dc.subjectrandom forest
dc.titleRice leaf disease detection using the Stretched Neighborhood Effect Color to Grayscale method and Machine Learningen
dc.typeArtigopt
dspace.entity.typePublication
relation.isOrgUnitOfPublicationa4071986-4355-47c3-a5a3-bd4d1a966e4f
relation.isOrgUnitOfPublication.latestForDiscoverya4071986-4355-47c3-a5a3-bd4d1a966e4f
unesp.author.orcid0000-0002-3829-4118[1]
unesp.author.orcid0000-0002-0102-4253[2]
unesp.author.orcid0000-0003-1120-1708[3]
unesp.author.orcid0000-0002-8882-9256[4]
unesp.author.orcid0000-0001-9793-750X[5]
unesp.author.orcid0000-0002-2215-0734[6]
unesp.author.orcid0000-0001-6510-9187[7]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Engenharia e Ciências, Guaratinguetápt

Arquivos