Logotipo do repositório
 

Publicação:
Testing density-functional approximations on a lattice and the applicability of the related Hohenberg-Kohn-like theorem

dc.contributor.authorFranca, Vivian V. [UNESP]
dc.contributor.authorCoe, Jeremy P.
dc.contributor.authorD'Amico, Irene
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionHeriot Watt Univ
dc.contributor.institutionUniv York
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.date.accessioned2018-11-26T20:08:57Z
dc.date.available2018-11-26T20:08:57Z
dc.date.issued2018-01-12
dc.description.abstractWe present a metric-space approach to quantify the performance of approximations in lattice density-functional theory for interacting many-body systems and to explore the regimes where the Hohenberg-Kohn-type theorem on fermionic lattices is applicable. This theorem demonstrates the existence of one-to-one mappings between particle densities, wave functions and external potentials. We then focus on these quantities, and quantify how far apart in metric space the approximated and exact ones are. We apply our method to the one-dimensional Hubbard model for different types of external potentials, and assess the regimes where it is applicable to one of the most used approximations in density-functional theory, the local density approximation (LDA). We find that the potential distance may have a very different behaviour from the density and wave function distances, in some cases even providing the wrong assessments of the LDA performance trends. We attribute this to the systems reaching behaviours which are borderline for the applicability of the one-to-one correspondence between density and external potential. On the contrary the wave function and density distances behave similarly and are always sensitive to system variations. Our metric-based method correctly predicts the regimes where the LDA performs fairly well and the regimes where it fails. This suggests that our method could be a practical tool for testing the efficiency of density-functional approximations.en
dc.description.affiliationSao Paulo State Univ, Inst Chem, BR-14800060 Araraquara, SP, Brazil
dc.description.affiliationHeriot Watt Univ, Sch Engn & Phys Sci, Inst Chem Sci, Edinburgh EH14 4AS, Midlothian, Scotland
dc.description.affiliationUniv York, Dept Phys, York YO10 5DD, N Yorkshire, England
dc.description.affiliationUniv Sao Paulo, Inst Fis Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Inst Chem, BR-14800060 Araraquara, SP, Brazil
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipRoyal Society through the Newton Advanced Fellowship scheme
dc.description.sponsorshipIdCNPq: 448220/2014-8
dc.description.sponsorshipIdCNPq: 401414/2014-0
dc.description.sponsorshipIdFAPESP: 2013/15982-3
dc.description.sponsorshipIdRoyal Society through the Newton Advanced Fellowship scheme: NA140436
dc.format.extent11
dc.identifierhttp://dx.doi.org/10.1038/s41598-017-19018-x
dc.identifier.citationScientific Reports. London: Nature Publishing Group, v. 8, 11 p., 2018.
dc.identifier.doi10.1038/s41598-017-19018-x
dc.identifier.fileWOS000419945400105.pdf
dc.identifier.issn2045-2322
dc.identifier.urihttp://hdl.handle.net/11449/164795
dc.identifier.wosWOS:000419945400105
dc.language.isoeng
dc.publisherNature Publishing Group
dc.relation.ispartofScientific Reports
dc.relation.ispartofsjr1,533
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.titleTesting density-functional approximations on a lattice and the applicability of the related Hohenberg-Kohn-like theoremen
dc.typeArtigo
dcterms.rightsHolderNature Publishing Group
dspace.entity.typePublication
unesp.author.orcid0000-0002-4794-1348[3]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Física Teórica (IFT), São Paulopt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000419945400105.pdf
Tamanho:
2.51 MB
Formato:
Adobe Portable Document Format
Descrição: