Repository logo
 

Publication:
Structure-Property-Performance Relationship of Ultrathin Pd-Au Alloy Catalyst Layers for Low-Temperature Ethanol Oxidation in Alkaline Media

dc.contributor.authorMcClure, Joshua P.
dc.contributor.authorBoltersdorf, Jonathan
dc.contributor.authorBaker, David R.
dc.contributor.authorFarinha, Thomas G.
dc.contributor.authorDzuricky, Nicholas
dc.contributor.authorVillegas, Cesar E. P. [UNESP]
dc.contributor.authorRocha, Alexandre R. [UNESP]
dc.contributor.authorLeite, Marina S.
dc.contributor.institutionUS Army
dc.contributor.institutionUniv Maryland
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniv Privada Norte
dc.date.accessioned2019-10-04T12:39:54Z
dc.date.available2019-10-04T12:39:54Z
dc.date.issued2019-07-17
dc.description.abstractPd-containing alloys are promising materials for catalysis. Yet, the relationship of the structure-property performance strongly depends on their chemical composition, which is currently not fully resolved. Herein, we present a physical vapor deposition methodology for developing PdxAu1-x alloys with fine control over the chemical composition. We establish direct correlations between the composition and these materials' structural and electronic properties with its catalytic activity in an ethanol (EtOH) oxidation reaction. By combining X-ray diffraction (XRD) and X-ray photelectron spectroscopy (XPS) measurements, we validate that the Pd content within both bulk and surface compositions can be finely controlled in an ultrathin-film regime. Catalytic oxidation of EtOH on the PdxAu1-x electrodes presents the largest forward-sweeping current density for x = 0.73 at similar to 135 mA cm(-2), with the lowest onset potential and largest peak activity of 639 A g(pd)(-1) observed for x = 0.58. Density functional theory (DFT) calculations and XPS measurements demonstrate that the valence band of the alloys is completely dominated by Pd particularly near the Fermi level, regardless of its chemical composition. Moreover, DFT provides key insights into the PdxAu1-x, ligand effect, with relevant chemisorption activity descriptors probed for a large number of surface arrangements. These results demonstrate that alloys can outperform pure metals in catalytic processes, with fine control of the chemical composition being a powerful tuning knob for the electronic properties and, therefore, the catalytic activity of ultrathin PdxAu1-x, catalysts. Our high throughput experimental methodology, in connection with DFT calculations, provides a unique foundation for further materials' discovery, including machine-learning predictions for novel alloys, the development of Pd-alloyed membranes for the purification of reformate gases, binder-free ultrathin electrocatalysts for fuel cells, and room temperature lithography-based development of nanostructures for optically driven processes.en
dc.description.affiliationUS Army, Res Lab, Sensors & Electron Devices Directorate, Adelphi, MD 20783 USA
dc.description.affiliationUniv Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA
dc.description.affiliationUniv Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA
dc.description.affiliationUniv Estadual Paulista, Inst Fis Teor, BR-01140070 Sao Paulo, Brazil
dc.description.affiliationUniv Privada Norte, Dept Ciencias, Ave Andres Belaunde Cdra 10 S-N, Comas, Peru
dc.description.affiliationUnespUniv Estadual Paulista, Inst Fis Teor, BR-01140070 Sao Paulo, Brazil
dc.description.sponsorshipNational Science Foundation (MMN program)
dc.description.sponsorshipArmy Research Office
dc.description.sponsorshipU.S. Department of the Army
dc.description.sponsorshipU.S. Army Material Command
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipClark Doctoral Fellowship Program
dc.description.sponsorshipMcNair Fellowship
dc.description.sponsorshipIdNational Science Foundation (MMN program): 1609414
dc.description.sponsorshipIdArmy Research Office: W911NF1810177
dc.description.sponsorshipIdFAPESP: 2016/01343-7
dc.description.sponsorshipIdFAPESP: 2017/02317-2
dc.format.extent24919-24932
dc.identifierhttp://dx.doi.org/10.1021/acsami.9b01389
dc.identifier.citationAcs Applied Materials & Interfaces. Washington: Amer Chemical Soc, v. 11, n. 28, p. 24919-24932, 2019.
dc.identifier.doi10.1021/acsami.9b01389
dc.identifier.issn1944-8244
dc.identifier.urihttp://hdl.handle.net/11449/185934
dc.identifier.wosWOS:000476684900010
dc.language.isoeng
dc.publisherAmer Chemical Soc
dc.relation.ispartofAcs Applied Materials & Interfaces
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.subjectmetal alloys
dc.subjectPd
dc.subjectAu
dc.subjectelectrocatalysis
dc.subjectband structure
dc.subjectethanol oxidation
dc.subjectalkaline medium
dc.subjectultrathin catalyst layer
dc.titleStructure-Property-Performance Relationship of Ultrathin Pd-Au Alloy Catalyst Layers for Low-Temperature Ethanol Oxidation in Alkaline Mediaen
dc.typeArtigo
dcterms.rightsHolderAmer Chemical Soc
dspace.entity.typePublication
unesp.author.lattes4785631459929035[7]
unesp.author.orcid0000-0003-4418-9709[5]
unesp.author.orcid0000-0001-8874-6947[7]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Física Teórica (IFT), São Paulopt

Files