Logotipo do repositório
 

Publicação:
Classification of histological images based on the stationary wavelet transform

dc.contributor.authorNascimento, Marcelo Zanchetta do
dc.contributor.authorNeves, Leandro Alves [UNESP]
dc.contributor.authorDuarte, Sidon Cléo
dc.contributor.authorDuarte, Yan Anderson Siriano
dc.contributor.authorBatista, Valério Ramos
dc.contributor.institutionUniversidade Federal de Uberlândia (UFU)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Federal do ABC (UFABC)
dc.date.accessioned2015-10-21T13:14:00Z
dc.date.available2015-10-21T13:14:00Z
dc.date.issued2015-01-01
dc.description.abstractNon-Hodgkin lymphomas are of many distinct types, and different classification systems make it difficult to diagnose them correctly. Many of these systems classify lymphomas only based on what they look like under a microscope. In 2008 the World Health Organisation (WHO) introduced the most recent system, which also considers the chromosome features of the lymphoma cells and the presence of certain proteins on their surface. The WHO system is the one that we apply in this work. Herewith we present an automatic method to classify histological images of three types of non-Hodgkin lymphoma. Our method is based on the Stationary Wavelet Transform (SWT), and it consists of three steps: 1) extracting sub-bands from the histological image through SWT, 2) applying Analysis of Variance (ANOVA) to clean noise and select the most relevant information, 3) classifying it by the Support Vector Machine (SVM) algorithm. The kernel types Linear, RBF and Polynomial were evaluated with our method applied to 210 images of lymphoma from the National Institute on Aging. We concluded that the following combination led to the most relevant results: detail sub-band, ANOVA and SVM with Linear and RBF kernels.en
dc.description.affiliationUniversidade Federal de Uberlândia, Faculdade de Ciência da Computação
dc.description.affiliationUniversidade Federal do ABC, Centro de Matemática, Ciência da Computação e Cognição
dc.description.affiliationUnespUniversidade Estadual Paulista, Departamento de Ciência da Computação e Estatística, Instituto de Biociências, Letras e Ciências Exatas de São José do Rio Preto
dc.format.extent1-4
dc.identifierhttp://iopscience.iop.org/article/10.1088/1742-6596/574/1/012133/meta
dc.identifier.citation3rd International Conference On Mathematical Modeling In Physical Sciences (IC-MSQUARE 2014). Bristol: Iop Publishing Ltd, v. 574, p. 1-4, 2015.
dc.identifier.doi10.1088/1742-6596/574/1/012133
dc.identifier.fileWOS000352595600133.pdf
dc.identifier.issn1742-6588
dc.identifier.lattes2139053814879312
dc.identifier.urihttp://hdl.handle.net/11449/128819
dc.identifier.wosWOS:000352595600133
dc.language.isoeng
dc.publisherIop Publishing Ltd
dc.relation.ispartof3rd International Conference On Mathematical Modeling In Physical Sciences (IC-MSQUARE 2014)
dc.relation.ispartofsjr0,241
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.titleClassification of histological images based on the stationary wavelet transformen
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://iopscience.iop.org/page/copyright
dcterms.rightsHolderIop Publishing Ltd
dspace.entity.typePublication
unesp.author.lattes2139053814879312
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentCiências da Computação e Estatística - IBILCEpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000352595600133.pdf
Tamanho:
1001.39 KB
Formato:
Adobe Portable Document Format