Logo do repositório

New families of global cubic centers

dc.contributor.authorLlibre, Jaume
dc.contributor.authorSerantola, Leonardo P. [UNESP]
dc.contributor.institutionUniversitat Autònoma de Barcelona
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2025-04-29T19:13:39Z
dc.date.issued2024-12-01
dc.description.abstractAn equilibrium point p of a differential system in the plane R2 is a center if there exists a neighbourhood U of p such that U\{p} is filled with periodic orbits. A difficult classical problem in the qualitative theory of differential systems in the plane R2 is the problem of distinguishing between a focus and a center. A global center is a center p such that R2\{p} is filled with periodic orbits. Another difficult problem in the qualitative theory of differential systems in R2 is to distinguish inside a family of centers the ones which are global. Lloyd, Pearson and Romanovsky characterized when the origin of coordinates is a center for the family of cubic polynomial differential systems x˙=y-Cx2+B+2Dxy+Cy2+Px3+Gx2y-H+3Pxy2+Ky3,y˙=-x+Dx2+E+2Cxy-Dy2-Kx3-H+3Px2y-Gxy2+Py3. Here we characterize when the origin of this family of differential system is a global center.en
dc.description.affiliationDepartament de Matemàtiques Universitat Autònoma de Barcelona, Catalonia
dc.description.affiliationDepartamento de Matemática Ibilce–UNESP
dc.description.affiliationUnespDepartamento de Matemática Ibilce–UNESP
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipIdCAPES: 88887.802675/2023-00
dc.format.extent1454-1469
dc.identifierhttp://dx.doi.org/10.1007/s40863-024-00411-0
dc.identifier.citationSao Paulo Journal of Mathematical Sciences, v. 18, n. 2, p. 1454-1469, 2024.
dc.identifier.doi10.1007/s40863-024-00411-0
dc.identifier.issn2316-9028
dc.identifier.issn1982-6907
dc.identifier.scopus2-s2.0-85189141219
dc.identifier.urihttps://hdl.handle.net/11449/302129
dc.language.isoeng
dc.relation.ispartofSao Paulo Journal of Mathematical Sciences
dc.sourceScopus
dc.subjectCenter
dc.subjectCubic polynomial differential systems
dc.subjectGlobal center
dc.titleNew families of global cubic centersen
dc.typeArtigopt
dspace.entity.typePublication
unesp.author.orcid0000-0002-3589-7466[2]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Pretopt

Arquivos