New families of global cubic centers
| dc.contributor.author | Llibre, Jaume | |
| dc.contributor.author | Serantola, Leonardo P. [UNESP] | |
| dc.contributor.institution | Universitat Autònoma de Barcelona | |
| dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
| dc.date.accessioned | 2025-04-29T19:13:39Z | |
| dc.date.issued | 2024-12-01 | |
| dc.description.abstract | An equilibrium point p of a differential system in the plane R2 is a center if there exists a neighbourhood U of p such that U\{p} is filled with periodic orbits. A difficult classical problem in the qualitative theory of differential systems in the plane R2 is the problem of distinguishing between a focus and a center. A global center is a center p such that R2\{p} is filled with periodic orbits. Another difficult problem in the qualitative theory of differential systems in R2 is to distinguish inside a family of centers the ones which are global. Lloyd, Pearson and Romanovsky characterized when the origin of coordinates is a center for the family of cubic polynomial differential systems x˙=y-Cx2+B+2Dxy+Cy2+Px3+Gx2y-H+3Pxy2+Ky3,y˙=-x+Dx2+E+2Cxy-Dy2-Kx3-H+3Px2y-Gxy2+Py3. Here we characterize when the origin of this family of differential system is a global center. | en |
| dc.description.affiliation | Departament de Matemàtiques Universitat Autònoma de Barcelona, Catalonia | |
| dc.description.affiliation | Departamento de Matemática Ibilce–UNESP | |
| dc.description.affiliationUnesp | Departamento de Matemática Ibilce–UNESP | |
| dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
| dc.description.sponsorshipId | CAPES: 88887.802675/2023-00 | |
| dc.format.extent | 1454-1469 | |
| dc.identifier | http://dx.doi.org/10.1007/s40863-024-00411-0 | |
| dc.identifier.citation | Sao Paulo Journal of Mathematical Sciences, v. 18, n. 2, p. 1454-1469, 2024. | |
| dc.identifier.doi | 10.1007/s40863-024-00411-0 | |
| dc.identifier.issn | 2316-9028 | |
| dc.identifier.issn | 1982-6907 | |
| dc.identifier.scopus | 2-s2.0-85189141219 | |
| dc.identifier.uri | https://hdl.handle.net/11449/302129 | |
| dc.language.iso | eng | |
| dc.relation.ispartof | Sao Paulo Journal of Mathematical Sciences | |
| dc.source | Scopus | |
| dc.subject | Center | |
| dc.subject | Cubic polynomial differential systems | |
| dc.subject | Global center | |
| dc.title | New families of global cubic centers | en |
| dc.type | Artigo | pt |
| dspace.entity.type | Publication | |
| unesp.author.orcid | 0000-0002-3589-7466[2] | |
| unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Preto | pt |

