Logotipo do repositório
 

Publicação:
Continuous-variable supraquantum nonlocality

dc.contributor.authorKetterer, Andreas
dc.contributor.authorLaversanne-Finot, Adrien
dc.contributor.authorAolita, Leandro [UNESP]
dc.contributor.institutionUniversität Siegen
dc.contributor.institutionCNRS UMR 7162
dc.contributor.institutionUniversidade Federal do Rio de Janeiro (UFRJ)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-12-11T17:17:43Z
dc.date.available2018-12-11T17:17:43Z
dc.date.issued2018-01-31
dc.description.abstractSupraquantum nonlocality refers to correlations that are more nonlocal than allowed by quantum theory but still physically conceivable in postquantum theories, in the sense of respecting the basic no-faster-than-light communication principle. While supraquantum correlations are relatively well understood for finite-dimensional systems, little is known in the infinite-dimensional case. Here, we study supraquantum nonlocality for bipartite systems with two measurement settings and infinitely many outcomes per subsystem. We develop a formalism for generic no-signaling black-box measurement devices with continuous outputs in terms of probability measures, instead of probability distributions, which involves a few technical subtleties. We show the existence of a class of supraquantum Gaussian correlations, which violate the Tsirelson bound of an adequate continuous-variable Bell inequality. We then introduce the continuous-variable version of the celebrated Popescu-Rohrlich (PR) boxes, as a limiting case of the above-mentioned Gaussian ones. Finally, we characterize the geometry of the set of continuous-variable no-signaling correlations. Namely, we show that that the convex hull of the continuous-variable PR boxes is dense in the no-signaling set. We also show that these boxes are extreme in the set of no-signaling behaviors and provide evidence suggesting that they are indeed the only extreme points of the no-signaling set. Our results lay the grounds for studying generalized-probability theories in continuous-variable systems.en
dc.description.affiliationNaturwissenschaftlich-Technische Fakultät Universität Siegen, Walter-Flex-Str. 3
dc.description.affiliationLaboratoire Matériaux et Phénomènes Quantiques Sorbonne Paris Cité Université Paris Diderot CNRS UMR 7162
dc.description.affiliationInstituto de Física Universidade Federal Do Rio de Janeiro, Caixa Postal 68528
dc.description.affiliationICTP South American Institute for Fundamental Research Instituto de Física Teórica UNESP-Universidade Estadual Paulista, R. Dr. Bento T. Ferraz 271, Bl. II
dc.description.affiliationUnespICTP South American Institute for Fundamental Research Instituto de Física Teórica UNESP-Universidade Estadual Paulista, R. Dr. Bento T. Ferraz 271, Bl. II
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.identifierhttp://dx.doi.org/10.1103/PhysRevA.97.012133
dc.identifier.citationPhysical Review A, v. 97, n. 1, 2018.
dc.identifier.doi10.1103/PhysRevA.97.012133
dc.identifier.file2-s2.0-85041470130.pdf
dc.identifier.issn2469-9934
dc.identifier.issn2469-9926
dc.identifier.scopus2-s2.0-85041470130
dc.identifier.urihttp://hdl.handle.net/11449/175822
dc.language.isoeng
dc.relation.ispartofPhysical Review A
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.titleContinuous-variable supraquantum nonlocalityen
dc.typeArtigo
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Física Teórica (IFT), São Paulopt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
2-s2.0-85041470130.pdf
Tamanho:
1.56 MB
Formato:
Adobe Portable Document Format
Descrição: