Publicação: Continuous-variable supraquantum nonlocality
dc.contributor.author | Ketterer, Andreas | |
dc.contributor.author | Laversanne-Finot, Adrien | |
dc.contributor.author | Aolita, Leandro [UNESP] | |
dc.contributor.institution | Universität Siegen | |
dc.contributor.institution | CNRS UMR 7162 | |
dc.contributor.institution | Universidade Federal do Rio de Janeiro (UFRJ) | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2018-12-11T17:17:43Z | |
dc.date.available | 2018-12-11T17:17:43Z | |
dc.date.issued | 2018-01-31 | |
dc.description.abstract | Supraquantum nonlocality refers to correlations that are more nonlocal than allowed by quantum theory but still physically conceivable in postquantum theories, in the sense of respecting the basic no-faster-than-light communication principle. While supraquantum correlations are relatively well understood for finite-dimensional systems, little is known in the infinite-dimensional case. Here, we study supraquantum nonlocality for bipartite systems with two measurement settings and infinitely many outcomes per subsystem. We develop a formalism for generic no-signaling black-box measurement devices with continuous outputs in terms of probability measures, instead of probability distributions, which involves a few technical subtleties. We show the existence of a class of supraquantum Gaussian correlations, which violate the Tsirelson bound of an adequate continuous-variable Bell inequality. We then introduce the continuous-variable version of the celebrated Popescu-Rohrlich (PR) boxes, as a limiting case of the above-mentioned Gaussian ones. Finally, we characterize the geometry of the set of continuous-variable no-signaling correlations. Namely, we show that that the convex hull of the continuous-variable PR boxes is dense in the no-signaling set. We also show that these boxes are extreme in the set of no-signaling behaviors and provide evidence suggesting that they are indeed the only extreme points of the no-signaling set. Our results lay the grounds for studying generalized-probability theories in continuous-variable systems. | en |
dc.description.affiliation | Naturwissenschaftlich-Technische Fakultät Universität Siegen, Walter-Flex-Str. 3 | |
dc.description.affiliation | Laboratoire Matériaux et Phénomènes Quantiques Sorbonne Paris Cité Université Paris Diderot CNRS UMR 7162 | |
dc.description.affiliation | Instituto de Física Universidade Federal Do Rio de Janeiro, Caixa Postal 68528 | |
dc.description.affiliation | ICTP South American Institute for Fundamental Research Instituto de Física Teórica UNESP-Universidade Estadual Paulista, R. Dr. Bento T. Ferraz 271, Bl. II | |
dc.description.affiliationUnesp | ICTP South American Institute for Fundamental Research Instituto de Física Teórica UNESP-Universidade Estadual Paulista, R. Dr. Bento T. Ferraz 271, Bl. II | |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.identifier | http://dx.doi.org/10.1103/PhysRevA.97.012133 | |
dc.identifier.citation | Physical Review A, v. 97, n. 1, 2018. | |
dc.identifier.doi | 10.1103/PhysRevA.97.012133 | |
dc.identifier.file | 2-s2.0-85041470130.pdf | |
dc.identifier.issn | 2469-9934 | |
dc.identifier.issn | 2469-9926 | |
dc.identifier.scopus | 2-s2.0-85041470130 | |
dc.identifier.uri | http://hdl.handle.net/11449/175822 | |
dc.language.iso | eng | |
dc.relation.ispartof | Physical Review A | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Scopus | |
dc.title | Continuous-variable supraquantum nonlocality | en |
dc.type | Artigo | |
dspace.entity.type | Publication | |
unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Física Teórica (IFT), São Paulo | pt |
Arquivos
Pacote Original
1 - 1 de 1
Carregando...
- Nome:
- 2-s2.0-85041470130.pdf
- Tamanho:
- 1.56 MB
- Formato:
- Adobe Portable Document Format
- Descrição: