Repository logo
 

Publication:
Finite time blow-up and breaking of solitary wind waves

Loading...
Thumbnail Image

Advisor

Coadvisor

Graduate program

Undergraduate course

Journal Title

Journal ISSN

Volume Title

Publisher

Amer Physical Soc

Type

Article

Access right

Acesso abertoAcesso Aberto

Abstract

The evolution of surface water waves in finite depth under wind forcing is reduced to an antidissipative Korteweg-de Vries-Burgers equation. We exhibit its solitary wave solution. Antidissipation accelerates and increases the amplitude of the solitary wave and leads to blow-up and breaking. Blow-up occurs in finite time for infinitely large asymptotic space so it is a nonlinear, dispersive, and antidissipative equivalent of the linear instability which occurs for infinite time. Due to antidissipation two given arbitrary and adjacent planes of constant phases of the solitary wave acquire different velocities and accelerations inducing breaking. Soliton breaking occurs in finite space in a time prior to the blow-up. We show that the theoretical growth in amplitude and the time of breaking are both testable in an existing experimental facility.

Description

Keywords

Language

English

Citation

Physical Review E. College Pk: Amer Physical Soc, v. 90, n. 1, 4 p., 2014.

Related itens

Units

Departments

Undergraduate courses

Graduate programs