Logotipo do repositório
 

Publicação:
Monitoring bivariate and trivariate mean vectors with a Shewhart chart

dc.contributor.authorLeoni, Roberto Campos
dc.contributor.authorCosta, Antonio Fernando Branco [UNESP]
dc.contributor.institutionAcademia Militar de Agulhas Negras
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-04-29T08:03:59Z
dc.date.available2022-04-29T08:03:59Z
dc.date.issued2017-12-01
dc.description.abstractIn this article, we propose the use of the mean chart to control multivariate processes. The basic idea is to control the mean vector of bivariate (X, Y) and trivariate (X, Y, Z) processes by alternating the charting statistic of the Shewhart chart. If the mean of X observations was the charting statistic to obtain the current sample point, then the mean of Y observations will be the charting statistic to obtain the next sample point (for the trivariate case, the mean of Z observations will be the charting statistic to obtain the sample point subsequent to the next one). As a Shewhart chart, the signal is given anytime a sample point is plotted beyond the control limits, independent of the charting statistic in use. A fair comparison between the proposed chart and the Hotelling chart is based on an equal number of measurements per sample. The Shewhart chart with alternated charting statistic (ACS) always outperforms the Hotelling chart, except for specific types of disturbances in quality characteristics highly correlated (ρ = 0.7). The ACS chart is substantially easier to operate and faster than the Hotelling chart in signaling changes in the mean vector of bivariate and trivariate processes. Even with fewer measurements per sample, the trivariate ACS chart outperforms the Hotelling chart.en
dc.description.affiliationEnsino Academia Militar de Agulhas Negras
dc.description.affiliationProduction Universidade Estadual Paulista Faculdade de Engenharia de Guaratingueté
dc.description.affiliationUnespProduction Universidade Estadual Paulista Faculdade de Engenharia de Guaratingueté
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdCNPq: 304599/2015-8
dc.description.sponsorshipIdCNPq: 402559/2016-9
dc.format.extent2035-2042
dc.identifierhttp://dx.doi.org/10.1002/qre.2165
dc.identifier.citationQuality and Reliability Engineering International, v. 33, n. 8, p. 2035-2042, 2017.
dc.identifier.doi10.1002/qre.2165
dc.identifier.issn1099-1638
dc.identifier.issn0748-8017
dc.identifier.scopus2-s2.0-85019741123
dc.identifier.urihttp://hdl.handle.net/11449/228329
dc.language.isoeng
dc.relation.ispartofQuality and Reliability Engineering International
dc.sourceScopus
dc.subjectalternating charting statistic
dc.subjectbivariate processes
dc.subjectShewhart chart
dc.subjecttrivariate processes
dc.titleMonitoring bivariate and trivariate mean vectors with a Shewhart charten
dc.typeArtigo
dspace.entity.typePublication
unesp.author.orcid0000-0001-6600-2963[1]
unesp.author.orcid0000-0001-6620-4573[2]
unesp.departmentProdução - FEGpt

Arquivos