Logo do repositório
 

Estimativa da produtividade de trigo em função da adubação nitrogenada utilizando modelagem neuro fuzzy

dc.contributor.authorSilva, Aldo A. V. da
dc.contributor.authorSilva, Inara A. F.
dc.contributor.authorTeixeira Filho, Marcelo C. M. [UNESP]
dc.contributor.authorBuzetti, Salatier [UNESP]
dc.contributor.authorTeixeira, Marcelo C. M. [UNESP]
dc.contributor.institutionDAI IFMT
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-12-03T13:10:27Z
dc.date.available2014-12-03T13:10:27Z
dc.date.issued2014-02-01
dc.description.abstractCurrently new techniques for data processing, such as neural networks, fuzzy logic and hybrid systems are used to develop predictive models of complex systems and to estimate the desired parameters. In this article the use of an adaptive neuro fuzzy inference system was investigated to estimate the productivity of wheat, using a database of combination of the following treatments: five N doses (0, 50, 100, 150 and 200 kg ha(-1)), three sources (Entec, ammonium sulfate and urea), two application times of N (at sowing or at side-dressing) and two wheat cultivars (IAC 370 and E21), that were evaluated during two years in Selviria, Mato Grosso do Sul, Brazil. Through the input and output data, the system of adaptive neuro fuzzy inference learns, and then can estimate a new value of wheat yield with different N doses. The productivity prediciton error of wheat in function of five N doses, using a neuro fuzzy system, was smaller than that one obtained with a quadratic approximation. The results show that the neuro fuzzy system is a viable prediction model for estimating the wheat yield in function of N doses.en
dc.description.affiliationDAI IFMT, Cuiaba, MT, Brazil
dc.description.affiliationDEFERS FEIS UNESP, Ilha Solteira, SP, Brazil
dc.description.affiliationDEE FEIS UNESP, Ilha Solteira, SP, Brazil
dc.description.affiliationUnespDEFERS FEIS UNESP, Ilha Solteira, SP, Brazil
dc.description.affiliationUnespDEE FEIS UNESP, Ilha Solteira, SP, Brazil
dc.format.extent180-187
dc.identifierhttp://dx.doi.org/10.1590/S1415-43662014000200008
dc.identifier.citationRevista Brasileira de Engenharia Agricola e Ambiental. Joao Pessoa Pb: Univ Fed Paraiba Ccsa, v. 18, n. 2, p. 180-187, 2014.
dc.identifier.fileS1415-43662014000200008.pdf
dc.identifier.issn1807-1929
dc.identifier.lattes6513339894781452
dc.identifier.scieloS1415-43662014000200008
dc.identifier.urihttp://hdl.handle.net/11449/112148
dc.identifier.wosWOS:000333402800008
dc.language.isopor
dc.publisherUniv Fed Paraiba Ccsa
dc.relation.ispartofRevista Brasileira de Engenharia Agrícola e Ambiental
dc.relation.ispartofjcr0.619
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectTriticum aestivum L.en
dc.subjectnitrogenen
dc.subjectneural networksen
dc.subjectANFISen
dc.subjecthybrid systemsen
dc.titleEstimativa da produtividade de trigo em função da adubação nitrogenada utilizando modelagem neuro fuzzypt
dc.title.alternativeEstimate of wheat grain yield as function of nitrogen fertilization using neuro fuzzy modelingen
dc.typeArtigo
dcterms.rightsHolderUniv Fed Paraiba Ccsa
dspace.entity.typePublication
unesp.author.lattes6513339894781452
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Engenharia, Ilha Solteirapt
unesp.departmentEngenharia Elétrica - FEISpt
unesp.departmentFitossanidade, Engenharia Rural e Solos - FEISpt

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
S1415-43662014000200008.pdf
Tamanho:
582.77 KB
Formato:
Adobe Portable Document Format