Logotipo do repositório
 

Publicação:
Analysis of forecasting capabilities of ground surfaces valuation using artificial neural networks

dc.contributor.authorde Aguiar, Paulo Roberto [UNESP]
dc.contributor.authorde Paula, Wallace C. F. [UNESP]
dc.contributor.authorBianchi, Eduardo Carlos [UNESP]
dc.contributor.authorCovolan Ulson, Jose Alfredo [UNESP]
dc.contributor.authorDorigatti Cruz, Carlos E. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-20T13:27:16Z
dc.date.available2014-05-20T13:27:16Z
dc.date.issued2010-04-01
dc.description.abstractIndustry worldwide has been marked by intense competition in recent years, placing companies under ever increasing pressure to improve the efficiency of their product processes. In addition to efficiency, precision is an extremely important factor, allowing companies to maintain standards and procedures aligned with international standards. One of the finishing processes most widely utilized for the manufacturing of mechanical precision components is grinding, and one of the principal criteria for evaluating the final quality of a product is its surface, which is influenced mainly by thermal and mechanical factors. Thus, the objective of this work was to investigate the intrinsic relationship between the surface quality of ground workpieces and the behavior of the corresponding acoustic emission and grinding power signals in the surface grinding processes, using artificial neural networks. The surface quality of workpieces was analyzed based on parameters of surface grinding burn, surface roughness and microhardness. The use of artifice-al neural networks in the characterization of the surface quality ground workpieces was found to yield good results, constituting an interesting proposal for the implementation of intelligent systems in industrial environments.en
dc.description.affiliationUniv Estadual Paulista, UNESP, Dept Elect Engn, Bauru, SP, Brazil
dc.description.affiliationUniv Estadual Paulista, UNESP, Grad Prog Mat Sci & Tech, Bauru, SP, Brazil
dc.description.affiliationUniv Estadual Paulista, UNESP, Dept Mech Engn, Bauru, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, UNESP, Dept Elect Engn, Bauru, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, UNESP, Grad Prog Mat Sci & Tech, Bauru, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, UNESP, Dept Mech Engn, Bauru, SP, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIFM - The Institute Factory of Millennium
dc.format.extent146-153
dc.identifierhttp://dx.doi.org/10.1590/S1678-58782010000200007
dc.identifier.citationJournal of The Brazilian Society of Mechanical Sciences and Engineering. Rio de Janeiro Rj: Abcm Brazilian Soc Mechanical Sciences & Engineering, v. 32, n. 2, p. 146-153, 2010.
dc.identifier.fileS1678-58782010000200007-en.pdf
dc.identifier.issn1678-5878
dc.identifier.lattes1455400309660081
dc.identifier.lattes1099152007574921
dc.identifier.lattes4517057121462258
dc.identifier.orcid0000-0002-9934-4465
dc.identifier.scieloS1678-58782010000200007
dc.identifier.urihttp://hdl.handle.net/11449/8921
dc.identifier.wosWOS:000284077800006
dc.language.isoeng
dc.publisherAbcm Brazilian Soc Mechanical Sciences & Engineering
dc.relation.ispartofJournal of the Brazilian Society of Mechanical Sciences and Engineering
dc.relation.ispartofjcr1.627
dc.relation.ispartofsjr0,362
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectgrindingen
dc.subjectburn detectionen
dc.subjectsurface roughnessen
dc.subjecthardnessen
dc.subjectartificial neural networksen
dc.titleAnalysis of forecasting capabilities of ground surfaces valuation using artificial neural networksen
dc.typeArtigo
dcterms.licensehttp://www.scielo.br/revistas/jbsmse/paboutj.htm
dcterms.rightsHolderAbcm Brazilian Soc Mechanical Sciences & Engineering
dspace.entity.typePublication
unesp.author.lattes1455400309660081[1]
unesp.author.lattes1099152007574921[3]
unesp.author.lattes4517057121462258
unesp.author.orcid0000-0002-9934-4465[1]
unesp.author.orcid0000-0003-2675-4276[3]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Engenharia, Baurupt
unesp.departmentEngenharia Elétrica - FEBpt
unesp.departmentEngenharia Mecânica - FEBpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
S1678-58782010000200007-en.pdf
Tamanho:
505.05 KB
Formato:
Adobe Portable Document Format
Descrição:

Licença do Pacote

Agora exibindo 1 - 2 de 2
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição:
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: