Enhancement of harvesting vacuum entanglement in Cosmic String Spacetime
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
We analyze the entanglement generation in a pair of qubits that experience the vacuum fluctuations of a scalar field in the Cosmic String spacetime. The qubits are modeled as Unruh-DeWitt detectors coupled to a massless scalar field. We introduce a Heisenberg XY -interaction between the qubits that enhances the generation of quantum correlations. It is supposed that the qubits begin at a general mixed state described by a density operator with no entanglement while the field stays at its vacuum state. In this way, we find the general properties and conditions to create entanglement between the qubits by exploiting the field vacuum fluctuations. We quantify the qubits entanglement using the Negativity measure based on the Peres-Horodecki positive partial transpose criterion. We find that the Cosmic String would increase the entanglement harvesting when both qubits are near the Cosmic String. When the qubits locations are far from the Cosmic String we recover the usual results for Minkowski space. The Heisenberg XY -interaction enhances the entanglement harvesting irrespective of the coupling nature (ferromagnetic or anti-ferromagnetic). When the qubits are far apart from each other we find a maximum entanglement harvesting at the resonance points between the Heisenberg coupling constant and the qubits energy gap.
Descrição
Palavras-chave
Boundary Quantum Field Theory, Topological Field Theories, Topological Strings
Idioma
Inglês
Citação
Journal of High Energy Physics, v. 2025, n. 3, 2025.




