Logotipo do repositório
 

Publicação:
Direct photo-oxidation and superoxide radical as major responsible for dye photodegradation mechanism promoted by TiO2–rGO heterostructure

dc.contributor.authorByzynski, Gabriela [UNESP]
dc.contributor.authorVolanti, Diogo P. [UNESP]
dc.contributor.authorRibeiro, Cauê
dc.contributor.authorMastelaro, Valmor R.
dc.contributor.authorLongo, Elson
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionEmpresa Brasileira de Pesquisa Agropecuária (EMBRAPA)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.date.accessioned2018-12-11T16:54:55Z
dc.date.available2018-12-11T16:54:55Z
dc.date.issued2018-10-01
dc.description.abstractThe increase in photocatalytic activity of reduced graphene oxide–TiO2 heterostructures under ultraviolet and visible illumination is already well known, as the photocatalyst mechanism modifications with heterostructure formation. However, which step in the degradation mechanism is modified with reduced graphene oxide–TiO2 heterostructure formation has been not demonstrated yet. These specific modifications are caused by the alteration in reactive oxygen species production. In this way, the goal of this study is defined which reactive oxygen species are produced by reduced graphene oxide–TiO2 heterostructure in the photocatalytic mechanism. A fast synthesis method to obtain this heterostructure by the microwave-assisted solvothermal method is presented, obtaining an improvement of photocatalytic efficiency, under UV and visible illumination. The non-hydrolytic method favors a better distribution of TiO2 nanoparticles around the reduced graphene oxide structure and inhabits the charge carrier recombination, showing a faster electron transfer than TiO2 samples. The RhB discoloration mechanism confirms that the reduced graphene oxide presence modifies the main reactive oxygen species produced. Under UV illumination, O2H* radical is the dominant reactive oxygen species produced by TiO2. For the heterostructure, the direct oxidation by oxygen vacancy is the primary mechanism step. Under visible illumination, O2H* is the main reactive oxygen species for both materials. The results present a better understanding of principal reasons related to the improvement in photocatalytic activity and could be useful in semiconductor heterostructure design.en
dc.description.affiliationIQ UNESP São Paulo State University, Av. Prof. Francisco Degni, 55 - Jardim Quitandinha
dc.description.affiliationIBILCE UNESP São Paulo State University
dc.description.affiliationEmbrapa Instrumentation
dc.description.affiliationPhysics Institute of São Carlos USP
dc.description.affiliationDQ UFSCar Federal University of São Carlos
dc.description.affiliationUnespIQ UNESP São Paulo State University, Av. Prof. Francisco Degni, 55 - Jardim Quitandinha
dc.description.affiliationUnespIBILCE UNESP São Paulo State University
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado do Rio Grande do Sul
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdCNPq: #444926/2014-3
dc.description.sponsorshipIdFundação de Amparo à Pesquisa do Estado do Rio Grande do Sul: CEPID 2013/07296-2
dc.description.sponsorshipIdFundação de Amparo à Pesquisa do Estado do Rio Grande do Sul: grant #2012/26671-9
dc.description.sponsorshipIdFAPESP: grant #2014/11410-8
dc.description.sponsorshipIdFundação de Amparo à Pesquisa do Estado do Rio Grande do Sul: grant #2014/17343-0
dc.description.sponsorshipIdFundação de Amparo à Pesquisa do Estado do Rio Grande do Sul: grant #2015/04511-5
dc.description.sponsorshipIdFundação de Amparo à Pesquisa do Estado do Rio Grande do Sul: grant #2017/01267-1
dc.format.extent17022-17037
dc.identifierhttp://dx.doi.org/10.1007/s10854-018-9799-0
dc.identifier.citationJournal of Materials Science: Materials in Electronics, v. 29, n. 19, p. 17022-17037, 2018.
dc.identifier.doi10.1007/s10854-018-9799-0
dc.identifier.file2-s2.0-85051498082.pdf
dc.identifier.issn1573-482X
dc.identifier.issn0957-4522
dc.identifier.lattes2354739980406725
dc.identifier.orcid0000-0001-9315-9392
dc.identifier.scopus2-s2.0-85051498082
dc.identifier.urihttp://hdl.handle.net/11449/171332
dc.language.isoeng
dc.relation.ispartofJournal of Materials Science: Materials in Electronics
dc.relation.ispartofsjr0,503
dc.rights.accessRightsAcesso abertopt
dc.sourceScopus
dc.titleDirect photo-oxidation and superoxide radical as major responsible for dye photodegradation mechanism promoted by TiO2–rGO heterostructureen
dc.typeArtigopt
dspace.entity.typePublication
unesp.author.lattes2354739980406725[2]
unesp.author.orcid0000-0003-2422-9806[1]
unesp.author.orcid0000-0001-9315-9392[2]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Pretopt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
2-s2.0-85051498082.pdf
Tamanho:
3.17 MB
Formato:
Adobe Portable Document Format
Descrição: