Repository logo
 

Publication:
Impedance-based structural health monitoring with artificial neural networks

Loading...
Thumbnail Image

Advisor

Coadvisor

Graduate program

Undergraduate course

Journal Title

Journal ISSN

Volume Title

Publisher

Type

Article

Access right

Acesso restrito

Abstract

This paper presents a non-model based technique to detect, locate, and characterize structural damage by combining the impedance-based structural health monitoring technique with an artificial neural network. The impedance-based structural health monitoring technique, which utilizes the electromechanical coupling property of piezoelectric materials, has shown engineering feasibility in a variety of practical field applications. Relying on high frequency structural excitations (typically >30 kHz), this technique is very sensitive to minor structural changes in the near field of the piezoelectric sensors. In order to quantitatively assess the state of structures, multiple sets of artificial neural networks, which utilize measured electrical impedance signals for input patterns, were developed. By employing high frequency ranges and by incorporating neural network features, this technique is able to detect the damage in its early stage and to estimate the nature of damage without prior knowledge of the model of structures. The paper concludes with experimental examples, investigations on a massive quarter scale model of a steel bridge section and a space truss structure, in order to verify the performance of this proposed methodology.

Description

Keywords

Electric impedance, Neural networks, Piezoelectric materials, Trusses, Impedance based structural health monitoring, Space truss structure, Structural analysis

Language

English

Citation

Journal of Intelligent Material Systems and Structures, v. 11, n. 3, p. 206-214, 2000.

Related itens

Sponsors

Units

Departments

Undergraduate courses

Graduate programs