Logotipo do repositório
 

Publicação:
Inducing Contextual Classifications with Kernel Functions into Support Vector Machines

dc.contributor.authorNegri, Rogério Galante [UNESP]
dc.contributor.authorDa Silva, Erivaldo Antônio [UNESP]
dc.contributor.authorCasaca, Wallace [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-12-11T17:20:29Z
dc.date.available2018-12-11T17:20:29Z
dc.date.issued2018-06-01
dc.description.abstractKernel functions have revolutionized theory and practice in the field of pattern recognition, especially to perform image classification. Besides giving rise to nonlinear variants of the well-known support vector machine (SVM), these functions have also been successfully used to classify nonvectorial data (e.g., graphs and collection of sets), in which customized metrics are created to precisely measure the similarity among such contextual data entities. This letter introduces two context-inspired kernel functions as new SVM-driven methods for remote sensing image classification. In contrast to the existing SVM-based approaches that assume only multiattribute vectors as representative features in a high-dimensional space, the proposed models formally establish comparisons between the entire sets of context-given data, thus employing these contextual measurements to drive the classification. More precisely, stochastic distances as well as hypothesis tests are conveniently handled and 'kernelized' to build our models. A complete battery of experiments involving both remote sensing and real-world images is conducted to validate the performance of the proposed kernels against various well-established SVM-based methods.en
dc.description.affiliationInstituto de Ciência e Tecnologia UNESP
dc.description.affiliationFaculdade de Ciência e Tecnologia UNESP
dc.description.affiliationCampus Experimental de Rosana UNESP
dc.description.affiliationUnespInstituto de Ciência e Tecnologia UNESP
dc.description.affiliationUnespFaculdade de Ciência e Tecnologia UNESP
dc.description.affiliationUnespCampus Experimental de Rosana UNESP
dc.format.extent962-966
dc.identifierhttp://dx.doi.org/10.1109/LGRS.2018.2816460
dc.identifier.citationIEEE Geoscience and Remote Sensing Letters, v. 15, n. 6, p. 962-966, 2018.
dc.identifier.doi10.1109/LGRS.2018.2816460
dc.identifier.file2-s2.0-85047397877.pdf
dc.identifier.issn1545-598X
dc.identifier.lattes8201805132981288
dc.identifier.orcid0000-0002-4808-2362
dc.identifier.scopus2-s2.0-85047397877
dc.identifier.urihttp://hdl.handle.net/11449/176360
dc.language.isoeng
dc.relation.ispartofIEEE Geoscience and Remote Sensing Letters
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectContext
dc.subjectimage classification
dc.subjectKernel functions
dc.titleInducing Contextual Classifications with Kernel Functions into Support Vector Machinesen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.lattes8201805132981288[1]
unesp.author.orcid0000-0002-4808-2362[1]
unesp.author.orcid0000-0002-7069-0479[2]
unesp.author.orcid0000-0002-1073-9939[3]

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
2-s2.0-85047397877.pdf
Tamanho:
1.59 MB
Formato:
Adobe Portable Document Format
Descrição: