Logotipo do repositório
 

Publicação:
Detection and Classification of Voltage Disturbances in Electrical Power Systems Using a Modified Euclidean ARTMAP Neural Network with Continuous Training

dc.contributor.authorBarros, Ana Claudia [UNESP]
dc.contributor.authorTonelli-Neto, Mauro S.
dc.contributor.authorMagalini Santos Decanini, Jose Guilherme
dc.contributor.authorMinussi, Carlos Roberto [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionInst Fed Educ Ciencia & Tecnol Sao Paulo
dc.date.accessioned2018-11-26T16:17:13Z
dc.date.available2018-11-26T16:17:13Z
dc.date.issued2015-11-26
dc.description.abstractThis article presents a method to detect and classify voltage disturbances in electric power distribution systems using a modified Euclidean ARTMAP neural network with continuous training. This decision-making tool accelerates the procedures to restore the normal operation conditions providing security, reliability, and profits to utilities. Furthermore, it allows the diagnosis system to adapt to changes from the constant evolution of the electric system. The voltage signals features or signatures are extracted using discrete wavelet transform, multiresolution analysis, and the energy concept. Results show that the proposed methodology is robust and efficient, providing a fast diagnosis process. The data set used to validate the proposal is obtained by simulations in a real distribution system using ATP software.en
dc.description.affiliationUniv Estadual Paulista, Dept Elect Engn, BR-15385000 Ilha Solteira, SP, Brazil
dc.description.affiliationInst Fed Educ Ciencia & Tecnol Sao Paulo, Votuporanga, SP, Brazil
dc.description.affiliationInst Fed Educ Ciencia & Tecnol Sao Paulo, Presidente Epitacio, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Dept Elect Engn, BR-15385000 Ilha Solteira, SP, Brazil
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.format.extent2178-2188
dc.identifierhttp://dx.doi.org/10.1080/15325008.2015.1073814
dc.identifier.citationElectric Power Components And Systems. Philadelphia: Taylor & Francis Inc, v. 43, n. 19, p. 2178-2188, 2015.
dc.identifier.doi10.1080/15325008.2015.1073814
dc.identifier.fileWOS000362940700007.pdf
dc.identifier.issn1532-5008
dc.identifier.urihttp://hdl.handle.net/11449/160906
dc.identifier.wosWOS:000362940700007
dc.language.isoeng
dc.publisherTaylor & Francis Inc
dc.relation.ispartofElectric Power Components And Systems
dc.relation.ispartofsjr0,373
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectwavelet transform
dc.subjectEuclidean ARTMAP neural network
dc.subjectcontinuous training
dc.subjectpower quality disturbance
dc.subjectpower distribution system
dc.titleDetection and Classification of Voltage Disturbances in Electrical Power Systems Using a Modified Euclidean ARTMAP Neural Network with Continuous Trainingen
dc.typeArtigo
dcterms.licensehttp://journalauthors.tandf.co.uk/permissions/reusingOwnWork.asp
dcterms.rightsHolderTaylor & Francis Inc
dspace.entity.typePublication
unesp.author.lattes7166279400544764[4]
unesp.author.orcid0000-0001-6428-4506[4]
unesp.departmentEngenharia Elétrica - FEISpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000362940700007.pdf
Tamanho:
815.57 KB
Formato:
Adobe Portable Document Format
Descrição: