Publicação: Multinodal Load Forecasting in Power Electric Systems using a Neural Network with Radial Basis Function
Nenhuma Miniatura disponível
Data
2011-01-01
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Trans Tech Publications Ltd
Tipo
Trabalho apresentado em evento
Direito de acesso
Acesso aberto

Resumo
In this paper we present the results of the use of a methodology for multinodal load forecasting through an artificial neural network-type Multilayer Perceptron, making use of radial basis functions as activation function and the Backpropagation algorithm, as an algorithm to train the network. This methodology allows you to make the prediction at various points in power system, considering different types of consumers (residential, commercial, industrial) of the electric grid, is applied to the problem short-term electric load forecasting (24 hours ahead). We use a database (Centralised Dataset - CDS) provided by the Electricity Commission de New Zealand to this work.
Descrição
Idioma
Inglês
Como citar
High Performance Structures and Materials Engineering, Pts 1 and 2. Stafa-zurich: Trans Tech Publications Ltd, v. 217-218, p. 39-44, 2011.