Optimizing Natural Language Processing Applications for Sentiment Analysis
| dc.contributor.author | Lopes, Anderson Claiton [UNESP] | |
| dc.contributor.author | Gomes, Vitoria Zanon [UNESP] | |
| dc.contributor.author | Zafalon, Geraldo Francisco Donegá [UNESP] | |
| dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
| dc.date.accessioned | 2025-04-29T19:13:48Z | |
| dc.date.issued | 2024-01-01 | |
| dc.description.abstract | Recent technological advances have stimulated the exponential growth of social network data, driving an increase in research into sentiment analysis. Thus, studies exploring the intersection of Natural Language Processing and social network analysis are playing an important role, specially those one focused on heuristic approaches and the integration of algorithms with machine learning. This work centers on the application of sentiment analysis techniques, employing algorithms such as Logistic Regression and Support Vector Machines. The analyses were performed on datasets comprising 5,000 and 10,000 tweets, and our findings reveal the efficient performance of Logistic Regression in comparison with other approach. Logistc Regression improved the performed in almost all measures, with emphasis to accuracy, recall and F1-Score. | en |
| dc.description.affiliation | Department of Computer Science and Statistics Universidade Estadual Paulista (UNESP), Rua Cristóvão Colombo, 2265, Jardim Nazareth, SP | |
| dc.description.affiliationUnesp | Department of Computer Science and Statistics Universidade Estadual Paulista (UNESP), Rua Cristóvão Colombo, 2265, Jardim Nazareth, SP | |
| dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
| dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
| dc.description.sponsorshipId | FAPESP: 2020/08615-8 | |
| dc.description.sponsorshipId | CAPES: 88887.686064/2022-00 | |
| dc.format.extent | 698-705 | |
| dc.identifier | http://dx.doi.org/10.5220/0012632000003690 | |
| dc.identifier.citation | International Conference on Enterprise Information Systems, ICEIS - Proceedings, v. 1, p. 698-705. | |
| dc.identifier.doi | 10.5220/0012632000003690 | |
| dc.identifier.issn | 2184-4992 | |
| dc.identifier.scopus | 2-s2.0-85193936661 | |
| dc.identifier.uri | https://hdl.handle.net/11449/302171 | |
| dc.language.iso | eng | |
| dc.relation.ispartof | International Conference on Enterprise Information Systems, ICEIS - Proceedings | |
| dc.source | Scopus | |
| dc.subject | Machine Learning | |
| dc.subject | Natural Language Processing | |
| dc.subject | Sentiment Analysis | |
| dc.title | Optimizing Natural Language Processing Applications for Sentiment Analysis | en |
| dc.type | Trabalho apresentado em evento | pt |
| dspace.entity.type | Publication | |
| unesp.author.orcid | 0000-0003-2135-9947[1] | |
| unesp.author.orcid | 0000-0003-4176-566X[2] | |
| unesp.author.orcid | 0000-0003-2384-011X[3] | |
| unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Preto | pt |
