Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Optimizing Natural Language Processing Applications for Sentiment Analysis

dc.contributor.authorLopes, Anderson Claiton [UNESP]
dc.contributor.authorGomes, Vitoria Zanon [UNESP]
dc.contributor.authorZafalon, Geraldo Francisco Donegá [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2025-04-29T19:13:48Z
dc.date.issued2024-01-01
dc.description.abstractRecent technological advances have stimulated the exponential growth of social network data, driving an increase in research into sentiment analysis. Thus, studies exploring the intersection of Natural Language Processing and social network analysis are playing an important role, specially those one focused on heuristic approaches and the integration of algorithms with machine learning. This work centers on the application of sentiment analysis techniques, employing algorithms such as Logistic Regression and Support Vector Machines. The analyses were performed on datasets comprising 5,000 and 10,000 tweets, and our findings reveal the efficient performance of Logistic Regression in comparison with other approach. Logistc Regression improved the performed in almost all measures, with emphasis to accuracy, recall and F1-Score.en
dc.description.affiliationDepartment of Computer Science and Statistics Universidade Estadual Paulista (UNESP), Rua Cristóvão Colombo, 2265, Jardim Nazareth, SP
dc.description.affiliationUnespDepartment of Computer Science and Statistics Universidade Estadual Paulista (UNESP), Rua Cristóvão Colombo, 2265, Jardim Nazareth, SP
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipIdFAPESP: 2020/08615-8
dc.description.sponsorshipIdCAPES: 88887.686064/2022-00
dc.format.extent698-705
dc.identifierhttp://dx.doi.org/10.5220/0012632000003690
dc.identifier.citationInternational Conference on Enterprise Information Systems, ICEIS - Proceedings, v. 1, p. 698-705.
dc.identifier.doi10.5220/0012632000003690
dc.identifier.issn2184-4992
dc.identifier.scopus2-s2.0-85193936661
dc.identifier.urihttps://hdl.handle.net/11449/302171
dc.language.isoeng
dc.relation.ispartofInternational Conference on Enterprise Information Systems, ICEIS - Proceedings
dc.sourceScopus
dc.subjectMachine Learning
dc.subjectNatural Language Processing
dc.subjectSentiment Analysis
dc.titleOptimizing Natural Language Processing Applications for Sentiment Analysisen
dc.typeTrabalho apresentado em eventopt
dspace.entity.typePublication
unesp.author.orcid0000-0003-2135-9947[1]
unesp.author.orcid0000-0003-4176-566X[2]
unesp.author.orcid0000-0003-2384-011X[3]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Pretopt

Arquivos