Publicação:
Artificial neural network associated to UV/Vis spectroscopy for monitoring bioreactions in biopharmaceutical processes

dc.contributor.authorTakahashi, Maria Beatriz [UNESP]
dc.contributor.authorLeme, Jaci
dc.contributor.authorCaricati, Celso Pereira
dc.contributor.authorTonso, Aldo
dc.contributor.authorNuñez, Eutimio Gustavo Fernández [UNESP]
dc.contributor.authorRocha, José Celso [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.date.accessioned2015-08-21T17:53:04Z
dc.date.available2015-08-21T17:53:04Z
dc.date.issued2015
dc.description.abstractCurrently, mammalian cells are the most utilized hosts for biopharmaceutical production. The culture media for these cell lines include commonly in their composition a pH indicator. Spectroscopic techniques are used for biopharmaceutical process monitoring, among them, UV–Vis spectroscopy has found scarce applications. This work aimed to define artificial neural networks architecture and fit its parameters to predict some nutrients and metabolites, as well as viable cell concentration based on UV–Vis spectral data of mammalian cell bioprocess using phenol red in culture medium. The BHK-21 cell line was used as a mammalian cell model. Off-line spectra of supernatant samples taken from batches performed at different dissolved oxygen concentrations in two bioreactor configurations and with two pH control strategies were used to define two artificial neural networks. According to absolute errors, glutamine (0.13 ± 0.14 mM), glutamate (0.02 ± 0.02 mM), glucose (1.11 ± 1.70 mM), lactate (0.84 ± 0.68 mM) and viable cell concentrations (1.89 105 ± 1.90 105 cell/mL) were suitably predicted. The prediction error averages for monitored variables were lower than those previously reported using different spectroscopic techniques in combination with partial least squares or artificial neural network. The present work allows for UV–VIS sensor development, and decreases cost related to nutrients and metabolite quantifications.en
dc.description.affiliationUniversidade Estadual Paulista Júlio de Mesquita Filho, Assis, Unesp - Campus Assis, Parque Universitário, CEP 19806900, SP, Brasil
dc.description.affiliationUnespUniversidade Estadual Paulista Júlio de Mesquita Filho, Assis, Unesp - Campus Assis, Parque Universitário, CEP 19806900, SP, Brasil
dc.format.extent1045-1054
dc.identifier.citationBioprocess and Biosystems Engineering, v. 38, n. 6, p. 1045-1054, 2015.
dc.identifier.doi10.1007/s00449-014-1346-7
dc.identifier.issn1615-7591
dc.identifier.lattes2399590592977330
dc.identifier.urihttp://hdl.handle.net/11449/126758
dc.language.isoeng
dc.relation.ispartofBioprocess and Biosystems Engineering
dc.relation.ispartofjcr2.139
dc.relation.ispartofsjr0,640
dc.rights.accessRightsAcesso restrito
dc.sourceCurrículo Lattes
dc.titleArtificial neural network associated to UV/Vis spectroscopy for monitoring bioreactions in biopharmaceutical processesen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.lattes2399590592977330
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências e Letras, Assispt
unesp.departmentCiências Biológicas - FCLASpt

Arquivos