Logo do repositório

Smart Data Driven System for Pathological Voices Classification

dc.contributor.authorFernandes, Joana
dc.contributor.authorJunior, Arnaldo Candido [UNESP]
dc.contributor.authorFreitas, Diamantino
dc.contributor.authorTeixeira, João Paulo
dc.contributor.institutionFaculdade de Engenharia da Universidade do Porto (FEUP)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionInstituto Politecnico de Braganca (IPB)
dc.date.accessioned2023-07-29T12:51:32Z
dc.date.available2023-07-29T12:51:32Z
dc.date.issued2022-01-01
dc.description.abstractClassifying and recognizing voice pathologies non-invasively using acoustic analysis saves patient and specialist time and can improve the accuracy of assessments. In this work, we intend to understand which models provide better accuracy rates in the distinction between healthy and pathological, to later be implemented in a system for the detection of vocal pathologies. 194 control subjects and 350 pathological subjects distributed across 17 pathologies were used. Each subject has 3 vowels in 3 tones, which is equivalent to 9 sound files per subject. For each sound file, 13 parameters were extracted (jitta, jitter, Rap, PPQ5, ShdB, Shim, APQ3, APQ5, F0, HNR, autocorrelation, Shannon entropy and logarithmic entropy). For the classification between healthy and pathological, several classifiers were used (Decision Trees, Discriminant Analysis, Logistic Regression Classifiers, Naive Bayes Classifiers, Support Vector Machines, Nearest Neighbor Classifiers, Ensemble Classifiers, Neural Network Classifiers) with various models. For each patient, 118 parameters were used (13 acoustic parameters * 9 sound files per subject, plus the subject’s gender). As pre-processing of the input matrix data, the Outliers treatment was used using the quartile method, then the data were normalized and, finally, Principal Component Analysis (PCA) was applied in order to reduce the dimension. As the best model, the Wide Neural Network was obtained, with an accuracy of 98% and AUC of 0.99.en
dc.description.affiliationResearch Centre in Digitaization and Intelligent Robotics (CeDRI) Instituto Politecnico de Braganca (IPB) Braganca 5300 Portugal Faculdade de Engenharia da Universidade do Porto (FEUP)
dc.description.affiliationSão Paulo State University Institute of Biosciences Language and Physical Sciences, SP
dc.description.affiliationFaculdade de Engenharia da Universidade do Porto (FEUP)
dc.description.affiliationResearch Centre in Digitaization and Intelligent Robotics (CeDRI) Applied Management Research Unit (UNIAG) and Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC) Instituto Politecnico de Braganca (IPB)
dc.description.affiliationUnespSão Paulo State University Institute of Biosciences Language and Physical Sciences, SP
dc.format.extent419-426
dc.identifierhttp://dx.doi.org/10.1007/978-3-031-23236-7_29
dc.identifier.citationCommunications in Computer and Information Science, v. 1754 CCIS, p. 419-426.
dc.identifier.doi10.1007/978-3-031-23236-7_29
dc.identifier.issn1865-0937
dc.identifier.issn1865-0929
dc.identifier.scopus2-s2.0-85148012253
dc.identifier.urihttp://hdl.handle.net/11449/246824
dc.language.isoeng
dc.relation.ispartofCommunications in Computer and Information Science
dc.sourceScopus
dc.subjectMachine learning
dc.subjectPrincipal component analysis
dc.subjectSpeech features
dc.subjectSpeech pathologies
dc.subjectVocal acoustic analysis
dc.titleSmart Data Driven System for Pathological Voices Classificationen
dc.typeTrabalho apresentado em eventopt
dspace.entity.typePublication
unesp.author.orcid0000-0002-0618-4627[1]
unesp.author.orcid0000-0002-5647-0891[2]
unesp.author.orcid0000-0003-4260-9677[3]
unesp.author.orcid0000-0002-6679-5702[4]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Pretopt

Arquivos