Logo do repositório

Effectiveness of Random Search in SVM hyper-parameter tuning

dc.contributor.authorMantovani, Rafael G.
dc.contributor.authorRossi, Andre L. D. [UNESP]
dc.contributor.authorVanschoren, Joaquin
dc.contributor.authorBischl, Bernd
dc.contributor.authorCarvalho, Andre C. P. L. F. de
dc.contributor.authorIEEE
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionEindhoven Univ Technol TV E
dc.contributor.institutionUniv Munich
dc.date.accessioned2018-11-26T16:26:29Z
dc.date.available2018-11-26T16:26:29Z
dc.date.issued2015-01-01
dc.description.abstractClassification is one of the most common machine learning tasks. SVMs have been frequently applied to this task. In general, the values chosen for the hyper-parameters of SVMs affect the performance of their induced predictive models. Several studies use optimization techniques to find a set of hyper-parameter values that induces classifiers with good predictive performance. This paper investigates the hypothesis that a simple Random Search method is sufficient to adjust the hyper-parameters of SVMs. A set of experiments compared the performance of five tuning techniques: three meta-heuristics commonly used, Random Search and Grid Search. The experimental results show that the predictive performance of models using Random Search is equivalent to those obtained using metaheuristics and Grid Search, but with a lower computational cost.en
dc.description.affiliationUniv Sao Paulo, Sao Carlos, SP, Brazil
dc.description.affiliationUniv Estadual Paulista UNESP, Itapeva, SP, Brazil
dc.description.affiliationEindhoven Univ Technol TV E, Eindhoven, Netherlands
dc.description.affiliationUniv Munich, D-81377 Munich, Germany
dc.description.affiliationUnespUniv Estadual Paulista UNESP, Itapeva, SP, Brazil
dc.format.extent8
dc.identifier.citation2015 International Joint Conference On Neural Networks (ijcnn). New York: Ieee, 8 p., 2015.
dc.identifier.fileWOS000370730602099.pdf
dc.identifier.issn2161-4393
dc.identifier.urihttp://hdl.handle.net/11449/161237
dc.identifier.wosWOS:000370730602099
dc.language.isoeng
dc.publisherIeee
dc.relation.ispartof2015 International Joint Conference On Neural Networks (ijcnn)
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.titleEffectiveness of Random Search in SVM hyper-parameter tuningen
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee
dspace.entity.typePublication
unesp.author.lattes5604829226181486[2]
unesp.author.orcid0000-0001-6388-7479[2]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Ciências e Engenharia, Itapevapt
unesp.departmentEngenharia Industrial Madeireira - ICEpt

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000370730602099.pdf
Tamanho:
2.08 MB
Formato:
Adobe Portable Document Format
Descrição: