Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

A Change-Driven Image Foveation Approach for Tracking Plant Phenology

dc.contributor.authorSilva, Ewerton
dc.contributor.authorTorres, Ricardo S.
dc.contributor.authorAlberton, Bruna [UNESP]
dc.contributor.authorMorellato, Leonor Patrícia Cerdeira [UNESP]
dc.contributor.authorSilva, Thiago S. F.
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionNorwegian Univ Sci & Technol
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniv Stirling
dc.date.accessioned2020-12-10T20:03:30Z
dc.date.available2020-12-10T20:03:30Z
dc.date.issued2020-05-01
dc.description.abstractOne of the challenges in remote phenology studies lies in how to efficiently manage large volumes of data obtained as long-term sequences of high-resolution images. A promising approach is known as image foveation, which is able to reduce the computational resources used (i.e., memory storage) in several applications. In this paper, we propose an image foveation approach towards plant phenology tracking where relevant changes within an image time series guide the creation of foveal models used to resample unseen images. By doing so, images are taken to a space-variant domain where regions vary in resolution according to their contextual relevance for the application. We performed our validation on a dataset of vegetation image sequences previously used in plant phenology studies.en
dc.description.affiliationUniv Estadual Campinas, Inst Comp, BR-13083852 Campinas, Brazil
dc.description.affiliationNorwegian Univ Sci & Technol, Dept ICT & Nat Sci, Larsgardsvegen 2, N-6009 Alesund, Norway
dc.description.affiliationSao Paulo State Univ, Inst Biosci, Dept Bot, BR-13506900 Rio Claro, Brazil
dc.description.affiliationUniv Stirling, Fac Nat Resources, Biol & Environm Sci, Stirling FK9 4LA, Scotland
dc.description.affiliationUnespSao Paulo State Univ, Inst Biosci, Dept Bot, BR-13506900 Rio Claro, Brazil
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipIdCNPq: 307560/2016-3
dc.description.sponsorshipIdCNPq: 311820/2018-2
dc.description.sponsorshipIdCNPq: 310144/2015-9
dc.description.sponsorshipIdFAPESP: 2014/12236-1
dc.description.sponsorshipIdFAPESP: 2014/00215-0
dc.description.sponsorshipIdFAPESP: 2015/24494-8
dc.description.sponsorshipIdFAPESP: 2016/50250-1
dc.description.sponsorshipIdFAPESP: 2016/01413-5
dc.description.sponsorshipIdFAPESP: 2017/20945-0
dc.description.sponsorshipIdFAPESP: 2013/50155-0
dc.description.sponsorshipIdFAPESP: 2014/50715-9
dc.description.sponsorshipIdCAPES: 001
dc.format.extent14
dc.identifierhttp://dx.doi.org/10.3390/rs12091409
dc.identifier.citationRemote Sensing. Basel: Mdpi, v. 12, n. 9, 14 p., 2020.
dc.identifier.doi10.3390/rs12091409
dc.identifier.urihttp://hdl.handle.net/11449/197013
dc.identifier.wosWOS:000543394000056
dc.language.isoeng
dc.publisherMdpi
dc.relation.ispartofRemote Sensing
dc.sourceWeb of Science
dc.subjectfoveal model
dc.subjectimage foveation
dc.subjecthilbert curve
dc.subjectplant phenology tracking
dc.subjectspace-variant image
dc.titleA Change-Driven Image Foveation Approach for Tracking Plant Phenologyen
dc.typeArtigopt
dcterms.rightsHolderMdpi
dspace.entity.typePublication
unesp.author.orcid0000-0003-4835-8389[3]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Rio Claropt
unesp.departmentBotânica - IBpt

Arquivos