MOF-derived Co3O4-ZnO heterostructure for 3-methyl-1-butanol detection
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
Microbial volatile organic compounds (MVOCs) detection with a fast response and high selectivity is barely studied. The challenge is developing a material that matches these factors in different sensing conditions, such as operating temperature and humidity. In this study, we searched for a better way to improve the gas sensing properties of cobalt oxide (Co3O4), synthesizing a MOF-derived (ZIF-67-ZIF-8) p-n heterojunction of Co3O4-ZnO and varying the molar concentrations of these metals. The Co3O4 was synthesized through a mixture of cobalt(II) nitrate hexahydrate and 2-methylimidazole in a simple process at room temperature, forming the ZIF-67, which was then calcinated. The Co3O4-ZnO and ZnO-Co3O4 heterostructures were synthesized by adding zinc(II) nitrate hexahydrate to produce ZIF-8 and create a heterojunction with ZIF-67, followed by calcination. The Co3O4-ZnO sample exhibited higher sensing performance than pure Co3O4 and the heterostructure ZnO-Co3O4. In this case, Co3O4-ZnO exhibited a higher response of 14.6 to 3-methyl-1-butanol (3M1B) with a selectivity ratio of 2.79. These findings could improve food control by monitoring the MVOCs produced by bacteria, such as Pseudomonas spp, in the spoilage process of shrimp. Furthermore, under 65% of relative humidity, this sensor demonstrated a response of 10.4. Therefore, improving the Co3O4 performance as a gas sensor was achievable with a p-n heterojunction of zinc and cobalt, indicating a suitable response under different conditions.
Descrição
Palavras-chave
3-methyl-1-butanol, Cobalt oxide, Gas sensor, Metal-organic framework, Semiconductor
Idioma
Inglês
Citação
Sensors and Actuators B: Chemical, v. 408.




