Publicação: A discrete weighted Markov-Bernstein inequality for sequences and polynomials
Carregando...
Data
Autores
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Elsevier B.V.
Tipo
Artigo
Direito de acesso
Resumo
For parameters c is an element of(0,1) and beta > 0, let l(2)(c ,beta) be the Hilbert space of real functions defined on N (i.e., real sequences), for which parallel to f parallel to(2)(c,beta) := Sigma(infinity)(k=0)(beta)(k)/k! c(k)[f(k)](2) < infinity. We study the best (i.e., the smallest possible) constant gamma(n)(c,beta) in the discrete Markov-Bernstein inequality parallel to Delta P parallel to(c,beta) <= gamma(n)(c ,beta) parallel to P parallel to(c,beta), P is an element of P-n, where P-n is the set of real algebraic polynomials of degree at most n and Delta f(x) := f(x+1)-f(x). We prove that (i) gamma(n)(c, 1) <= 1 + 1/root c for every n is an element of N and lim(n ->infinity) gamma(n)(c, 1) = 1+1/root c; (ii) For every fixed c is an element of(0,1), gamma(n)(c, beta) is a monotonically decreasing function of beta in (0,infinity); (iii) For every fixed c is an element of(0,1) and beta > 0, the best Markov-Bernstein constants gamma(n)(c,beta) are bounded uniformly with respect to n. A similar Markov-Bernstein inequality is proved for sequences, and a relation between the best Markov-Bernstein constants gamma(n)(c, beta) and the smallest eigenvalues of certain explicitly given Jacobi matrices is established. (c) 2020 Elsevier Inc. All rights reserved.
Descrição
Palavras-chave
Markov-Bernstein inequality, Discrete inequality, Meixner weight, Meixner polynomials, Orthogonal polynomial, Chebyshev polynomial
Idioma
Inglês
Como citar
Journal Of Mathematical Analysis And Applications. San Diego: Academic Press Inc Elsevier Science, v. 493, n. 1, 15 p., 2021.