Publicação: A discrete weighted Markov-Bernstein inequality for sequences and polynomials
Nenhuma Miniatura disponível
Data
2021-01-01
Autores
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Elsevier B.V.
Tipo
Artigo
Direito de acesso
Resumo
For parameters c is an element of(0,1) and beta > 0, let l(2)(c ,beta) be the Hilbert space of real functions defined on N (i.e., real sequences), for which parallel to f parallel to(2)(c,beta) := Sigma(infinity)(k=0)(beta)(k)/k! c(k)[f(k)](2) < infinity. We study the best (i.e., the smallest possible) constant gamma(n)(c,beta) in the discrete Markov-Bernstein inequality parallel to Delta P parallel to(c,beta) <= gamma(n)(c ,beta) parallel to P parallel to(c,beta), P is an element of P-n, where P-n is the set of real algebraic polynomials of degree at most n and Delta f(x) := f(x+1)-f(x). We prove that (i) gamma(n)(c, 1) <= 1 + 1/root c for every n is an element of N and lim(n ->infinity) gamma(n)(c, 1) = 1+1/root c; (ii) For every fixed c is an element of(0,1), gamma(n)(c, beta) is a monotonically decreasing function of beta in (0,infinity); (iii) For every fixed c is an element of(0,1) and beta > 0, the best Markov-Bernstein constants gamma(n)(c,beta) are bounded uniformly with respect to n. A similar Markov-Bernstein inequality is proved for sequences, and a relation between the best Markov-Bernstein constants gamma(n)(c, beta) and the smallest eigenvalues of certain explicitly given Jacobi matrices is established. (c) 2020 Elsevier Inc. All rights reserved.
Descrição
Idioma
Inglês
Como citar
Journal Of Mathematical Analysis And Applications. San Diego: Academic Press Inc Elsevier Science, v. 493, n. 1, 15 p., 2021.