Publicação: Microstructural, Mechanical, and Fracture Characterization of Metal Matrix Composite Manufactured by Accumulative Roll Bonding
Nenhuma Miniatura disponível
Data
2021-04-01
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Resumo
Accumulative roll bonding is a severe plastic-forming process proposed to manufacture ceramic particle-reinforced multilayered metal matrix composites. In this work, low-cost composite multilayered laminate was produced by roll bonding commercially pure aluminum 1100 with 5% in volume of reinforcing microscale silicon carbide particles. Microstructural features, hardness, tensile properties in the presence of stress concentrators, and wear resistance were assessed. Fracture surface inspection was carried out to determine operating failure mechanisms. Hardness was significantly enhanced, whereas tensile properties only moderately improved by ceramic particles incorporation. The main reasons were some degree of recrystallization, work-hardening relief due to periodic annealing, minimum grain refinement, and somewhat agglomerated carbide particles. Though tensile properties increments were not much attractive, exceptional increase in wear performance was achieved due to the addition of particulate carbon-rich ceramic phase, which acted as solid lubricant mitigating abrasion, adhesion, and delamination wear mechanisms. The manufactured composite laminate can be worthwhile in applications where low cost, notch insensitivity, and superior wear and weather resistances are design requirements, as outdoor decks and patios.
Descrição
Idioma
Inglês
Como citar
Journal of Materials Engineering and Performance, v. 30, n. 4, p. 2645-2660, 2021.