Logotipo do repositório
 

Publicação:
APPROXIMATE CALCULATION OF SUMS II: GAUSSIAN TYPE QUADRATURE

dc.contributor.authorArea, Ivan
dc.contributor.authorDimitrov, Dimitar K. [UNESP]
dc.contributor.authorGodoy, Eduardo
dc.contributor.authorPaschoa, Vanessa G.
dc.contributor.institutionUniv Vigo
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Federal de São Paulo (UNIFESP)
dc.date.accessioned2018-11-26T17:06:38Z
dc.date.available2018-11-26T17:06:38Z
dc.date.issued2016-01-01
dc.description.abstractThe present paper is a continuation of a recent article [SIAM T. Numer. Anal., 52 (2014), pp. 1867-1886], where we proposed an algorithmic approach for approximate calculation of sums of the form Sigma(N)(j=1) f (j). The method is based on a Gaussian type quadrature formula for sums, which allows the calculation of sums with a very large number of terms N to be reduced to sums with a much smaller number of summands n. In this paper we prove that the Weierstrass-Dochev-Durand-Kerner iterative numerical method, with explicitly given initial conditions, converges to the nodes of the quadrature formula. Several methods for computing the nodes of the discrete analogue of the Gaussian quadrature formula are compared. Since, for practical purposes, any approximation of a sum should use only the values of the summands f(j), we implement a simple but efficient procedure to additionally approximate the evaluations at the nodes by local natural splines. Explicit numerical examples are provided. Moreover, the error in different spaces of functions is analyzed rigorously.en
dc.description.affiliationUniv Vigo, Dept Matemat Aplicada 2, EE Aeronaut & Espazo, Campus Lagoas, Orense 32004, Spain
dc.description.affiliationUniv Estadual Paulista, IBILCE, Dept Matemat Aplicada, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
dc.description.affiliationUniv Vigo, Dept Matemat Aplicada 2, EE Ind, Campus Lagoas Marcosende, Vigo 36310, Spain
dc.description.affiliationUniv Fed Sao Paulo UNIFESP, ICT, Dept Ciencia Computacao, BR-12231280 Sao Jose Dos Campos, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, IBILCE, Dept Matemat Aplicada, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipMinisterio de Economia y Competitividad of Spain
dc.description.sponsorshipEuropean Community fund FEDER
dc.description.sponsorshipIdCNPq: 307183/2013-0
dc.description.sponsorshipIdFAPESP: 2009/13832-9
dc.description.sponsorshipIdFAPESP: 2013/23606-1
dc.description.sponsorshipIdMinisterio de Economia y Competitividad of Spain: MTM2012-38794-C02-01
dc.format.extent2210-2227
dc.identifierhttp://dx.doi.org/10.1137/140993752
dc.identifier.citationSiam Journal On Numerical Analysis. Philadelphia: Siam Publications, v. 54, n. 4, p. 2210-2227, 2016.
dc.identifier.doi10.1137/140993752
dc.identifier.issn0036-1429
dc.identifier.urihttp://hdl.handle.net/11449/162043
dc.identifier.wosWOS:000385274300009
dc.language.isoeng
dc.publisherSiam Publications
dc.relation.ispartofSiam Journal On Numerical Analysis
dc.relation.ispartofsjr2,657
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectapproximate calculation of sums
dc.subjectGaussian type quadrature formula for sums
dc.subjectorthogonal Gram polynomials
dc.subjectzeros of Gram polynomials
dc.subjectzeros of Legendre polynomials
dc.subjectnatural spline
dc.subjectmonospline
dc.subjectWeierstrass-Dochev-Durand-Kerner method
dc.subjecterror analysis
dc.titleAPPROXIMATE CALCULATION OF SUMS II: GAUSSIAN TYPE QUADRATUREen
dc.typeArtigo
dcterms.rightsHolderSiam Publications
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentMatemática Aplicada - IBILCEpt

Arquivos