Publicação: Power Factor Correction Boost Converter Based on the Three-State Switching Cell
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Institute of Electrical and Electronics Engineers (IEEE)
Tipo
Artigo
Direito de acesso
Acesso restrito
Resumo
The need for solid-state ac-dc converters to improve power quality in terms of power factor correction, reduced total harmonic distortion at input ac mains, and precisely regulated dc output has motivated the investigation of several topologies based on classical converters such as buck, boost, and buck-boost converters. Boost converters operating in continuous-conduction mode have become particularly popular because reduced electromagnetic interference levels result from their utilization. Within this context, this paper introduces a bridgeless boost converter based on a three-state switching cell (3SSC), whose distinct advantages are reduced conduction losses with the use of magnetic elements with minimized size, weight, and volume. The approach also employs the principle of interleaved converters, as it can be extended to a generic number of legs per winding of the autotrans-formers and high power levels. A literature review of boost converters based on the 3SSC is initially presented so that key aspects are identified. The theoretical analysis of the proposed converter is then developed, while a comparison with a conventional boost converter is also performed. An experimental prototype rated at 1 kW is implemented to validate the proposal, as relevant issues regarding the novel converter are discussed.
Descrição
Palavras-chave
AC-DC converters, boost converter, harmonics, power factor correction (PFC), three-state switching cell (3SSC)
Idioma
Inglês
Como citar
IEEE Transactions on Industrial Electronics. Piscataway: IEEE-Inst Electrical Electronics Engineers Inc, v. 59, n. 3, p. 1565-1577, 2012.