Publicação: Previsão de demanda de um prédio universitário por redes neurais artificiais
Carregando...
Arquivos
Data
Autores
Orientador
Lotufo, Anna Diva Plasencia 

Coorientador
Pós-graduação
Engenharia Elétrica - FEIS
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Estadual Paulista (Unesp)
Tipo
Dissertação de mestrado
Direito de acesso
Acesso aberto

Resumo
Resumo (inglês)
This work analysis load data from desegregated levels that presented difficulties to load forecasting with several methods due to variation in electrical energy consumption. The application proposed in this work is short-term load forecasting to a university building by GRNN (General Regression Neural Network) considering the bottom up approach and using a moving average filter to deal with the missing or wrong data. It is presented the system that provides the data as well as the methods used for pre-processing and realize the forecasting. The results are evaluated by MAPE (Mean Absolute Perceptual Error) and are considered good when compared with other methods.
Resumo (português)
Este trabalho destaca a análise de dados provenientes de locais com níveis de consumo mais desagregados que apresentam dificuldades para previsões de demanda com vários métodos devido à alta variação no consumo de energia elétrica. Apresenta-se resultados de previsões de demanda de curto prazo da energia elétrica consumida em um bloco de uma universidade por meio da rede neural de regressão generalizada (GRNN), utilizando a abordagem de modelagem de dados de baixo para cima e tratamento de ruídos e dados faltantes no banco de dados através da aplicação de um filtro de médias móveis. É apresentado o local que fornece as informações para os estudos e a etapa de pré-processamentos dos dados. Foi possível analisar a assertividade das previsões de acordo com o cálculo do MAPE, mostrando vantagens ao se comparar a outros métodos utilizados para os mesmos fins.
Descrição
Palavras-chave
Bottom-up, GRNN, Previsão de demanda de curto prazo, Redes neurais artificiais, Smart grids
Idioma
Português