Electromagnetic Physics Models for Parallel Computing Architectures

Carregando...
Imagem de Miniatura

Data

2016-11-21

Autores

Amadio, G. [UNESP]
Ananya, A.
Apostolakis, J.
Aurora, A.
Bandieramonte, M.
Bhattacharyya, A.
Bianchini, C. [UNESP]
Brun, R.
Canal, P.
Carminati, F.

Título da Revista

ISSN da Revista

Título de Volume

Editor

Resumo

The recent emergence of hardware architectures characterized by many-core or accelerated processors has opened new opportunities for concurrent programming models taking advantage of both SIMD and SIMT architectures. GeantV, a next generation detector simulation, has been designed to exploit both the vector capability of mainstream CPUs and multi-threading capabilities of coprocessors including NVIDIA GPUS and Intel Xeon Phi. The characteristics of these architectures are very different in terms of the vectorization depth and type of parallelization needed to achieve optimal performance. In this paper we describe implementation of electromagnetic physics models developed for parallel computing architectures as a part of the GeantV project. Results of preliminary performance evaluation and physics validation are presented as well.

Descrição

Palavras-chave

Como citar

Journal of Physics: Conference Series, v. 762, n. 1, 2016.

Coleções