Publicação: Plasma immersion ion implantation (PIII) influence on Ti-6Al-4V alloy: Frequency effect
Carregando...
Arquivos
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Acesso aberto

Resumo
The plasma immersion ion implantation treatment (PIII) acts to increase mechanical resistance with solid solution formation, new phases and defects inclusion, besides chemical and residual stress profile modification. Ti-6Al-4V alloy presents poor tribological properties and high affinity with interstitial elements, such as nitrogen and oxygen, this makes it more reactive at high temperatures. This paper aims to study Ti-6Al-4V alloy fatigue behavior subjected to nitrogen addition by plasma immersion ion implantation. It was investigated the frequency parameter influence on fatigue resistance. Ti-6Al-4V alloy was PIII treated with voltage equal to 9.5 kV, frequencies varying between 1000 and 1500 Hz and submitted to axial fatigue tests. Axial fatigue tests were performed, at room temperature and R = 0.1. Ti-6Al-4V alloy fatigue results were supported by Weibull statistics analysis. Ti-6Al-4V alloy microstructural analysis showed equiaxed α + β grains. Weibull analysis at untreated condition presented m values greater than 1, indicating reliability and uniformity. For a lifetime of 107 cycles, fatigue resistance was equal to 829 MPa for untreated condition, 644, 767 and 417 MPa, for f = 1000, 1200 and 1500 Hz, respectively. The nitrogen-based compounds were detected only at the condition where f = 1200 Hz. Thus, the combination of PIII treatment parameters, when f = 1200 Hz, hindered crack nucleation and increasing fatigue resistance of treated Ti-6Al-4V alloy when compared with the other two treatment conditions.
Descrição
Palavras-chave
Axial fatigue, Frequency, PIII treatment, Ti-6Al-4V alloy
Idioma
Inglês
Como citar
International Journal of Fatigue, v. 109, p. 157-165.