Bifurcation of limit cycles from a non-smooth perturbation of a two-dimensional isochronous cylinder
Carregando...
Fonte externa
Fonte externa
Data
Autores
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Acesso aberto

Fonte externa
Fonte externa
Resumo
Detect the birth of limit cycles in non-smooth vector fields is a very important matter into the recent theory of dynamical systems and applied sciences. The goal of this paper is to study the bifurcation of limit cycles from a continuum of periodic orbits filling up a two-dimensional isochronous cylinder of a vector field in R3. The approach involves the regularization process of non-smooth vector fields and a method based in the Malkin bifurcation function for C0 perturbations. The results provide sufficient conditions in order to obtain limit cycles emerging from the cylinder through smooth and non-smooth perturbations of it. To the best of our knowledge they also illustrate the implementation by the first time of a new method based in the Malkin bifurcation function. In addition, some points concerning the number of limit cycles bifurcating from non-smooth perturbations compared with smooth ones are studied. In summary the results yield a better knowledge about limit cycles in non-smooth vector fields in R3 and explicit a manner to obtain them by performing non-smooth perturbations in codimension one Euclidean manifolds.
Descrição
Palavras-chave
Limit cycles, Malkin's bifurcation function, Non-smooth vector fields
Idioma
Inglês
Citação
Bulletin des Sciences Mathematiques, v. 140, n. 5, p. 519-540, 2016.


