Publicação: Electrically Tunable Gauge Fields in Tiny-Angle Twisted Bilayer Graphene
Carregando...
Data
Autores
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Acesso aberto

Resumo
Twisted bilayer graphene has recently attracted a lot of attention for its rich electronic properties and tunability. Here we show that for very small twist angles, α1°, the application of a perpendicular electric field is mathematically equivalent to a new kind of artificial gauge field. This identification opens the door for the generation and detection of pseudo-Landau levels in graphene platforms within robust setups, which do not depend on strain engineering and therefore can be realistically harvested for technological applications. Furthermore, this new artificial gauge field leads to the development of highly localized modes associated with flat bands close to charge neutrality, which form an emergent kagome lattice in real space. Our findings indicate that for tiny angles biased twisted bilayer graphene is a promising platform that can realize frustrated lattices of highly localized states, opening a new direction for the investigation of strongly correlated phases of matter.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Physical Review Letters, v. 121, n. 14, 2018.