Logotipo do repositório
 

Publicação:
Resiliency Assessment in Distribution Networks Using GIS-Based Predictive Risk Analytics

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Ieee-inst Electrical Electronics Engineers Inc

Tipo

Artigo

Direito de acesso

Resumo

A new predictive risk-based framework is proposed to increase power distribution network resiliency by improving operator understanding of the status of the grid. This paper expresses the risk assessment as the correlation between likelihood and impact. The likelihood is derived from the combination of Naive Bayes learning and Jenks natural breaks classifier. The analytics included in a geographic information system platform fuse together a massive amount of data from outage recordings and weather historical databases in just one semantic parameter known as failure probability. The financial impact is determined by a time-series-based formulation that supports spatiotemporal data from fault management events and customer interruption cost. Results offer prediction of hourly risk levels and monthly accumulated risk for each feeder section of a distribution network allowing for timely tracking of the operating condition.

Descrição

Palavras-chave

Power distribution system, risk assessment, Naive Bayes learning, failure probability, time series, interruption cost, geographic information system (GIS)

Idioma

Inglês

Como citar

Ieee Transactions On Power Systems. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 34, n. 6, p. 4249-4257, 2019.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação