Logotipo do repositório
 

Publicação:
New knowledge about grinding using MQL simultaneous to cooled air and MQL combined to wheel cleaning jet technique

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Springer

Tipo

Artigo

Direito de acesso

Resumo

The final quality of mechanical components has been increasingly desired in the industry. This final quality is directly linked to surface roughness, geometric deviations, and mechanical integrity of components subjected to machining processes. For that, the industry makes use of cutting fluids so that it is possible to achieve such conditions. In the case of grinding, the application of cutting fluid in abundance allows a great reduction in temperature, as well as a better removal of chips from the cutting surface of the wheel. However, the problems generated by the cutting fluid related to environmental and labor liabilities have increasingly led to the development of effective techniques for grinding with minimal amounts of cutting fluid. The difficulties linked to the use of MQL are concentrated in the low rate of heat removal and in the clogging of the cutting surface, varying according to the type of grinding wheel applied. In this sense, the present work proposes comparison during the cylindrical grinding of hardened steel under conventional lubrication conditions, minimum quantity lubricant (MQL), cooled air MQL (MQL + CA), and MQL with wheel cleaning jet (MQL + WCJ), using aluminum oxide (Al2O3) and CBN grinding wheels. The results are presented in terms of surface roughness, roundness error, microhardness, tangential force, diametrical wear of the grinding wheels, and G-ratio. The application of MQL + CA and MQL + WCJ can improve the use of MQL. In terms of roughness, the MQL + WCJ presents values close to the conventional increase of 8.8%. Roundness errors were reduced by up to 36.3% during the application of MQL + CA and MQL + WCJ and up to 10.5% for the tangential force. Thus, these advanced techniques have shown that the conditions are feasible for the application of pure MQL towards an eco-friendly grinding process.

Descrição

Palavras-chave

Grinding, MQL, MQL plus CA, MQL plus WCJ, Aluminum oxide grinding wheel, CBN grinding wheel, AISI 4340 hardened steel

Idioma

Inglês

Como citar

International Journal Of Advanced Manufacturing Technology. London: Springer London Ltd, v. 109, n. 3-4, p. 905-917, 2020.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação