Preparation of polyurethane monolithic resins and modification with a condensed tannin-yielding self-healing property

Nenhuma Miniatura disponível

Data

2019-11-01

Autores

Nardeli, Jéssica Verger [UNESP]
Fugivara, Cecílio Sadao [UNESP]
Pinto, Elaine Ruzgus Pereira [UNESP]
Polito, Wagner Luiz [UNESP]
Messaddeq, Younes [UNESP]
Ribeiro, Sidney José Lima [UNESP]
Benedetti, Assis Vicente [UNESP]

Título da Revista

ISSN da Revista

Título de Volume

Editor

Resumo

Resins of polyurethane were prepared from vegetable oils (crambe and castor) and modified by adding green corrosion inhibitor (condensed tannin). The oils were characterized by gas chromatography with flame-ionization detection (GC-FID), attenuated total reflectance Fourier transform infrared spectroscopy (FTIR-ATR) and thermogravimetric analysis (TGA). The reaction was monitored by characterizing the intermediate products (polyester and prepolymer). The polyester was characterized by solubility in methanol, acidity index, hydroxyl groups and FTIR-ATR, and the prepolymer was characterized by solid content, solvent content, isocyanate (NCO) groups and FTIR-ATR. The formation of PU resins was confirmed by FTIR-ATR and TGA, and the presence of tannin particles incorporated in the coating can be observed by optical microscopy (OM). The absence of the band attributed to NCO in FTIR-ATR spectra of the resins confirmed the complete reaction between polyester and prepolymer. The OM observation and a video demonstrate that Polyurethane (PU)-modified with condensed tannin resin presents self-healing effect, probably through the formation of new hydrogen bonds when in contact with deionized water. Therefore, these results open possibilities for new synthetic routes aiming at improving the very important self-healing property for protecting metals and their alloys against corrosion, extending significantly the metallic materials lifetime as previously demonstrated by our group.

Descrição

Palavras-chave

Castor oil, Condensed tannin, Condensed tannin-modified PU resin, Crambe oil, Polyurethane resins, Self-healing

Como citar

Polymers, v. 11, n. 11, 2019.