Bacteriocin enterocin CRL35 is a modular peptide that induces non-bilayer states in bacterial model membranes
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
The mechanism of action of the anti-Listeria peptide enterocin CRL35 was studied with biophysical tools by using lipid mixtures that mimicked Gram-positive plasma membranes. Langmuir monolayers and infrared spectroscopy indicated that the peptide readily interacted with phospholipid assembled in monolayers and bilayers to produce a dual effect, depending on the acyl chains. Indeed, short chain mixtures were disordered by enterocin CRL35, but the gel-phases of membranes composed by longer acyl chains were clearly stabilized by the bacteriocin. Structural and functional studies indicated that non-bilayer states were formed when liposomes were co-incubated with enterocin CRL35, whereas significant permeabilization could be detected when bilayer and non-bilayer states co-existed. Results can be explained by a two-step model in which the N-terminal of the peptide firstly docks enterocin CRL35 on the lipid surface by means of electrostatic interactions; then, C-terminal triggers membrane perturbation by insertion of hydrophobic α-helix.
Descrição
Palavras-chave
Bacterial membrane, Bacteriocin, Listeria, Monolayer, Spectroscopy, X-ray diffraction
Idioma
Inglês
Citação
Biochimica et Biophysica Acta - Biomembranes, v. 1862, n. 2, 2020.




