Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Schubert Derivations on the Infinite Wedge Power

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

The Schubert derivation is a distinguished Hasse–Schmidt derivation on the exterior algebra of a free abelian group, encoding the formalism of Schubert calculus for all Grassmannians at once. The purpose of this paper is to extend the Schubert derivation to the infinite exterior power of a free Z-module of infinite rank (fermionic Fock space). Classical vertex operators naturally arise from the integration by parts formula, that also recovers the generating function occurring in the bosonic vertex representation of the Lie algebra gl∞(Z) , due to Date, Jimbo, Kashiwara and Miwa (DJKM). In the present framework, the DJKM result will be interpreted as a limit case of the following general observation: the singular cohomology of the complex Grassmannian G(r, n) is an irreducible representation of the Lie algebra of n× n square matrices.

Descrição

Palavras-chave

Bosonic and Fermionic Fock spaces, Bosonic vertex representation of Date–Jimbo–Kashiwara–Miwa, Hasse–Schmidt derivations on exterior algebras, Schubert derivations on infinite wedge powers, Vertex operators

Idioma

Inglês

Citação

Bulletin of the Brazilian Mathematical Society.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso