Phosphorus fertilization with enhanced efficiency in soybean and corn crops

Nenhuma Miniatura disponível

Data

2020-01-01

Autores

Zanão, Luiz A.
Arf, Orivaldo [UNESP]
Reis, Roberto dos A.
Pereira, Natalia

Título da Revista

ISSN da Revista

Título de Volume

Editor

Resumo

Due to the low natural availability of phosphorus (P) in tropical soils and the plant's need for P, the use of phosphorus fertilizers of increased efficiency is an important tool for achieving high yields. The aims of this study were to evaluate plant growth, foliar P content and yield of soybean and corn crops in different seasons and places in response to P rates and sources. The sources of P were monoammonium phosphate (MAP) and Policote coated MAP (Policote+MAP). Field experiments were carried out comparing MAP performance compared to Policote coated MAP (MAP+Policote), an additive based on water soluble polymers. Experiments formed by P sources (MAP including 11% N, 52% P2O5 and MAP+Policote including 10% N, 49% P2O5) and rates were carried out in soybean and corn crops in different dates and sites. In the soybean crop, a (2×4) +1 factorial was used, comprising of two sources such as MAP and MAP+Policote and four rates of P (30, 60, 90 and 120 kg ha-1 of P2O5), besides the control. For corn, a (2×5) factorial was used, including two sources and five rates of P (0, 40, 80, 120 and 160 kg ha-1 of P2O5). The results showed that phosphorus fertilization would increase soybean and corn plant heights and yields in different seasons and places. Soybean and corn yield and agronomic phosphorus use efficiency were higher with Policote coated phosphorus fertilizer than with conventional phosphorus fertilizer. Policote coated phosphorus fertilizer can be used as an enhanced efficiency fertilizer because it increased soybean and corn yields in different seasons and places.

Descrição

Palavras-chave

Agronomic efficiency, Crop yield, Field experiments, Policote, Tropical soils

Como citar

Australian Journal of Crop Science, v. 14, n. 1, p. 78-84, 2020.