Superposition of two-mode squeezed states for quantum information processing and quantum sensing

Nenhuma Miniatura disponível

Data

2021-06-01

Autores

Cardoso, Fernando R.
Rossatto, Daniel Z. [UNESP]
Fernandes, Gabriel P. L. M.
Higgins, Gerard
Villas-Boas, Celso J.

Título da Revista

ISSN da Revista

Título de Volume

Editor

Resumo

We investigate superpositions of two-mode squeezed states (TMSSs), which have potential applications in quantum information processing and quantum sensing. We study some properties of these nonclassical states such as the statistics of each mode and the degree of entanglement between the two modes, which can be higher than that of a TMSS with the same degree of squeezing. The states we consider can be prepared by inducing two-mode Jaynes-Cummings and anti-Jaynes-Cummings interactions in a system of two modes and a spin-12 particle, for instance, in the trapped ion domain, as described here. We show that when two harmonic oscillators are prepared in a superposition of two TMSSs, each reduced single-mode state can be advantageously employed to sense arbitrary displacements of the mode in phase space. The Wigner function of this reduced state exhibits a symmetrical peak centered at the phase-space origin, which has the convenient peculiarity of getting narrower in both quadratures simultaneously as the average photon number increases. This narrow peak can be used as the pointer of our quantum sensor, with its position in phase space indicating the displacement undergone by the oscillator.

Descrição

Palavras-chave

Como citar

Physical Review A, v. 103, n. 6, 2021.