Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

How far you can get using machine learning black-boxes

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

Supervised Learning (SL) is a machine learning research area which aims at developing techniques able to take advantage from labeled training samples to make decisions over unseen examples. Recently, a lot of tools have been presented in order to perform machine learning in a more straightforward and transparent manner. However, one problem that is increasingly present in most of the SL problems being solved is that, sometimes, researchers do not completely understand what supervised learning is and, more often than not, publish results using machine learning black-boxes. In this paper, we shed light over the use of machine learning black-boxes and show researchers how far they can get using these out-of-the-box solutions instead of going deeper into the machinery of the classifiers. Here, we focus on one aspect of classifiers namely the way they compare examples in the feature space and show how a simple knowledge about the classifier's machinery can lift the results way beyond out-of-the-box machine learning solutions. © 2010 IEEE.

Descrição

Palavras-chave

K-Nearest neighbors, Machine learning black-boxes, Metrics space, Neural networks, Optimum-Path forest, Pattern analysis, Support vector machines

Idioma

Inglês

Citação

Proceedings - 23rd SIBGRAPI Conference on Graphics, Patterns and Images, SIBGRAPI 2010, p. 193-200.

Itens relacionados

Financiadores

Unidades

Item type:Unidade,
Faculdade de Ciências
FC
Campus: Bauru


Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso