Logotipo do repositório
 

Publicação:
Kappa-fuzzy ARTMAP: A feature selection based methodology to intrusion detection in computer networks

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

Intrusions in computer networks have driven the development of various techniques for intrusion detection systems (IDSs). In general, the existing approaches seek two goals: high detection rate and low false alarm rate. The problem with such proposed solutions is that they are usually processing intensive due to the large size of the training set in place. We propose a technique that combines a fuzzy ARTMAP neural network with the well-known Kappa coefficient to perform feature selection. By adding the Kappa coefficient to the feature selection process, we managed to reduce the training set substantially. The evaluation results show that our proposal is capable of detecting intrusions with high accuracy rates while keeping the computational cost low. © 2013 IEEE.

Descrição

Palavras-chave

feature selection, Fuzzy ARTMAP neural network, intrusion detection, Kappa coefficient

Idioma

Inglês

Como citar

Proceedings - 12th IEEE International Conference on Trust, Security and Privacy in Computing and Communications, TrustCom 2013, p. 271-276.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação