Show simple item record

dc.contributor.authorKraenkel, Roberto André [UNESP]
dc.contributor.authorSenthilvelan, M.
dc.date.accessioned2014-05-20T14:06:54Z
dc.date.available2014-05-20T14:06:54Z
dc.date.issued2001-05-01
dc.identifierhttp://dx.doi.org/10.1238/Physica.Regular.063a00353
dc.identifier.citationPhysica Scripta. Stockholm: Royal Swedish Acad Sciences, v. 63, n. 5, p. 353-356, 2001.
dc.identifier.issn0281-1847
dc.identifier.urihttp://hdl.handle.net/11449/23488
dc.description.abstractWe discuss in this paper equations describing processes involving non-linear and higher-order diffusion. We focus on a particular case (u(t) = 2 lambda (2)(uu(x))(x) + lambda (2)u(xxxx)), which is put into analogy with the KdV equation. A balance of nonlinearity and higher-order diffusion enables the existence of self-similar solutions, describing diffusive shocks. These shocks are continuous solutions with a discontinuous higher-order derivative at the shock front. We argue that they play a role analogous to the soliton solutions in the dispersive case. We also discuss several physical instances where such equations are relevant.en
dc.format.extent353-356
dc.language.isoeng
dc.publisherRoyal Swedish Acad Sciences
dc.relation.ispartofPhysica Scripta
dc.sourceWeb of Science
dc.titleMathematical models of generalized diffusionen
dc.typeArtigo
dcterms.licensehttp://iopscience.iop.org/page/copyright
dcterms.rightsHolderRoyal Swedish Acad Sciences
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.description.affiliationUniv Estadual Paulista, Inst Fis Teor, BR-01405900 São Paulo, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Inst Fis Teor, BR-01405900 São Paulo, Brazil
dc.identifier.doi10.1238/Physica.Regular.063a00353
dc.identifier.wosWOS:000168722600001
dc.rights.accessRightsAcesso restrito
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Física Teórica (IFT), São Paulopt
Localize o texto completo

Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record