Show simple item record

dc.contributor.authorKraenkel, Roberto André [UNESP]
dc.contributor.authorSenthilvelan, M.
dc.identifier.citationPhysica Scripta. Stockholm: Royal Swedish Acad Sciences, v. 63, n. 5, p. 353-356, 2001.
dc.description.abstractWe discuss in this paper equations describing processes involving non-linear and higher-order diffusion. We focus on a particular case (u(t) = 2 lambda (2)(uu(x))(x) + lambda (2)u(xxxx)), which is put into analogy with the KdV equation. A balance of nonlinearity and higher-order diffusion enables the existence of self-similar solutions, describing diffusive shocks. These shocks are continuous solutions with a discontinuous higher-order derivative at the shock front. We argue that they play a role analogous to the soliton solutions in the dispersive case. We also discuss several physical instances where such equations are relevant.en
dc.publisherRoyal Swedish Acad Sciences
dc.relation.ispartofPhysica Scripta
dc.sourceWeb of Science
dc.titleMathematical models of generalized diffusionen
dcterms.rightsHolderRoyal Swedish Acad Sciences
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.description.affiliationUniv Estadual Paulista, Inst Fis Teor, BR-01405900 São Paulo, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Inst Fis Teor, BR-01405900 São Paulo, Brazil
dc.rights.accessRightsAcesso restrito
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Física Teórica (IFT), São Paulopt
Localize o texto completo

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record