Radial basis function networks with quantized parameters
Author
Date
2008-09-30Type
Conference paper
Access rights
Open access 

Metadata
Show full item recordAbstract
A RBFN implemented with quantized parameters is proposed and the relative or limited approximation property is presented. Simulation results for sinusoidal function approximation with various quantization levels are shown. The results indicate that the network presents good approximation capability even with severe quantization. The parameter quantization decreases the memory size and circuit complexity required to store the network parameters leading to compact mixed-signal circuits proper for low-power applications. ©2008 IEEE.
How to cite this document
Lucks, Marcio B.; Nobuo, Oki. Radial basis function networks with quantized parameters. CIMSA 2008 - IEEE Conference on Computational Intelligence for Measurement Systems and Applications Proceedings, p. 23-27. Available at: <http://hdl.handle.net/11449/70591>.
Keywords
Language
English
Collections

Related items
Showing items related by title, author, creator and subject.
-
RBF circuits based on folded cascode differential pairs
Lucks, Marcio Barbosa; Oki, Nobuo
(Proceedings - SBCCI 2008: 21st Symposium on Integrated Circuits and Systems Design, 2008) [Trabalho apresentado em evento]
We propose new circuits for the implementation of Radial Basis Functions such as Gaussian and Gaussian-like functions. These RBFs are obtained by the subtraction of two differential pair output currents in a folded cascode ... -
Traffic flow breakdown prediction using feature reduction through Rough-Neuro fuzzy Networks
Affonso, C.; Sassi, R. J.; Ferreira, R. P. (Proceedings of the International Joint Conference on Neural Networks, 2011) [Trabalho apresentado em evento]
The prediction of the traffic behavior could help to make decision about the routing process, as well as enables gains on effectiveness and productivity on the physical distribution. This need motivated the search for ... -
Radial basis function network (RBFN) for function approximation
Lucks, M. B.; Oki, N.
(Midwest Symposium on Circuits and Systems, 1999) [Trabalho apresentado em evento]
A radial basis function network (RBFN) circuit for function approximation is presented. Simulation and experimental results show that the network has good approximation capabilities. The RBFN was a squared hyperbolic secant ...