Publicação: A neural network approach for robust nonlinear parameter estimation in presence of unknown-but-bounded errors
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Elsevier B.V.
Tipo
Trabalho apresentado em evento
Direito de acesso
Acesso aberto

Resumo
Systems based on artificial neural networks have high computational rates due to the use of a massive number of simple processing elements and the high degree of connectivity between these elements. This paper presents a novel approach to solve robust parameter estimation problem for nonlinear model with unknown-but-bounded errors and uncertainties. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the network convergence to the equilibrium points. A solution for the robust estimation problem with unknown-but-bounded error corresponds to an equilibrium point of the network. Simulation results are presented as an illustration of the proposed approach. Copyright (C) 2000 IFAC.
Descrição
Palavras-chave
parameter identification, neural networks, robust estimation, artificial intelligence, estimation algorithms
Idioma
Inglês
Como citar
Control Applications of Optimization 2000, Vols 1 and 2. Kidlington: Pergamon-Elsevier B.V., p. 317-322, 2000.