Publicação: The Yang-Lee edge singularity in spin models on connected and non-connected rings
Carregando...
Data
Autores
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Iop Publishing Ltd
Tipo
Artigo
Direito de acesso
Acesso restrito
Resumo
Renormalization group arguments based on a l phi(3) field theory lead us to expect a certain universal behavior for the density of partition function zeros in spin models with short-range interaction. Such universality has been tested analytically and numerically in different d = 1 and higher dimensional spin models. In d = 1, one finds usually the critical exponent sigma = -1/2. Recently, we have shown in the d = 1 Blume-Emery-Griffiths ( BEG) model on a periodic static lattice (one ring) that a new critical behavior with s = -2/3 can arise if we have a triple degeneracy of the transfer matrix eigenvalues. Here we define the d = 1 BEG model on a dynamic lattice consisting of connected and non-connected rings (non-periodic lattice) and check numerically that also in this case we have mostly sigma = -1/2 while the new value sigma = - 2/3 can arise under the same conditions of the static lattice (triple degeneracy) which is a strong check of universality of the new value of sigma. We also show that although such conditions are necessary, they are not sufficient to guarantee the new critical behavior.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Journal of Physics A-mathematical and Theoretical. Bristol: Iop Publishing Ltd, v. 41, n. 50, p. 15, 2008.