Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2024 a 5 de janeiro de 2025.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

 

On the Assessment of Nature-Inspired Meta-Heuristic Optimization Techniques to Fine-Tune Deep Belief Networks

Nenhuma Miniatura disponível

Data

2020-01-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Capítulo de livro

Direito de acesso

Resumo

Machine learning techniques are capable of talking, interpreting, creating, and even reasoning about virtually any subject. Also, their learning power has grown exponentially throughout the last years due to advances in hardware architecture. Nevertheless, most of these models still struggle regarding their practical usage since they require a proper selection of hyper-parameters, which are often empirically chosen. Such requirements are strengthened when concerning deep learning models, which commonly require a higher number of hyper-parameters. A collection of nature-inspired optimization techniques, known as meta-heuristics, arise as straightforward solutions to tackle such problems since they do not employ derivatives, thus alleviating their computational burden. Therefore, this work proposes a comparison among several meta-heuristic optimization techniques in the context of Deep Belief Networks hyper-parameter fine-tuning. An experimental setup was conducted over three public datasets in the task of binary image reconstruction and demonstrated consistent results, posing meta-heuristic techniques as a suitable alternative to the problem.

Descrição

Palavras-chave

Idioma

Inglês

Como citar

Natural Computing Series, p. 67-96.

Itens relacionados

Financiadores