Nonlinear Dynamics, Chaos and Control of the Hindmarsh-Rose Neuron Model
Nenhuma Miniatura disponível
Data
2022-01-01
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Resumo
Mathematics has changed over time to comprise interdisciplinary fields of research, and consid- ering this, biomathematics has arisen as an interface study. In this work, we analyze the dynamical behavior of the Hindmarsh-Rose neuron model, which describes the neuronal bursting in a single neuron. A stability study through the Lyapunov exponents method is proposed and evidence of a chaotic dynamics is presented. This chaotic behavior is biologically comparable to an individual undergoing an epileptic seizure, in which the application of an efficient controller represents a proposal for preventing epilepsy from happening. Therefore, a control design based on the State-Dependent Riccati Equation is proposed aiming to reduce the oscillation of the system to a desired orbit. The results show that the controller is efficient and robust as a method for preventing epileptic seizures.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Boletim da Sociedade Paranaense de Matematica, v. 40.