Multiseries Lie groups and asymptotic modules for characterizing and solving integrable models

dc.contributor.authorJaulent, Marcel
dc.contributor.authorManna, Miguel A. [UNESP]
dc.contributor.authorMartínez Alonso, Luis
dc.contributor.institutionUniversité des Sciences et Techniques du Languedoc
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidad Complutense
dc.date.accessioned2014-05-27T06:33:48Z
dc.date.available2014-05-27T06:33:48Z
dc.date.issued1989-08-01
dc.description.abstractA multiseries integrable model (MSIM) is defined as a family of compatible flows on an infinite-dimensional Lie group of N-tuples of formal series around N given poles on the Riemann sphere. Broad classes of solutions to a MSIM are characterized through modules over rings of rational functions, called asymptotic modules. Possible ways for constructing asymptotic modules are Riemann-Hilbert and ∂̄ problems. When MSIM's are written in terms of the group coordinates, some of them can be contracted into standard integrable models involving a small number of scalar functions only. Simple contractible MSIM's corresponding to one pole, yield the Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy. Two-pole contractible MSIM's are exhibited, which lead to a hierarchy of solvable systems of nonlinear differential equations consisting of (2 + 1) -dimensional evolution equations and of quite strong differential constraints. © 1989 American Institute of Physics.en
dc.description.affiliationLaboratoire de Physique Mathématique Université des Sciences et Techniques du Languedoc, 34060 Montpellier Cedex
dc.description.affiliationInstituto de Física Teórica Universidade Estadual Paulista, Rua Pamplona 145, 01405 São Paulo
dc.description.affiliationDepartamento de Métodos Matemáticos de la Física Facultad de Ciencias Físicas Universidad Complutense, 28040, Madrid
dc.description.affiliationUnespInstituto de Física Teórica Universidade Estadual Paulista, Rua Pamplona 145, 01405 São Paulo
dc.format.extent1662-1673
dc.identifierhttp://dx.doi.org/10.1063/1.528251
dc.identifier.citationJournal of Mathematical Physics, v. 30, n. 8, p. 1662-1673, 1989.
dc.identifier.doi10.1063/1.528251
dc.identifier.file2-s2.0-36549102431.pdf
dc.identifier.issn0022-2488
dc.identifier.scopus2-s2.0-36549102431
dc.identifier.urihttp://hdl.handle.net/11449/130489
dc.identifier.wosWOS:A1989AH02700002
dc.language.isoeng
dc.publisherAmerican Institute of Physics (AIP)
dc.relation.ispartofJournal of Mathematical Physics
dc.relation.ispartofjcr1.165
dc.relation.ispartofsjr0,644
dc.rights.accessRightsAcesso restrito
dc.sourceScopus
dc.titleMultiseries Lie groups and asymptotic modules for characterizing and solving integrable modelsen
dc.typeArtigo
dcterms.licensehttp://publishing.aip.org/authors/web-posting-guidelines
dcterms.rightsHolderAmer Inst Physics
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Física Teórica (IFT), São Paulopt

Arquivos