Multiseries Lie groups and asymptotic modules for characterizing and solving integrable models
dc.contributor.author | Jaulent, Marcel | |
dc.contributor.author | Manna, Miguel A. [UNESP] | |
dc.contributor.author | Martínez Alonso, Luis | |
dc.contributor.institution | Université des Sciences et Techniques du Languedoc | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Universidad Complutense | |
dc.date.accessioned | 2014-05-27T06:33:48Z | |
dc.date.available | 2014-05-27T06:33:48Z | |
dc.date.issued | 1989-08-01 | |
dc.description.abstract | A multiseries integrable model (MSIM) is defined as a family of compatible flows on an infinite-dimensional Lie group of N-tuples of formal series around N given poles on the Riemann sphere. Broad classes of solutions to a MSIM are characterized through modules over rings of rational functions, called asymptotic modules. Possible ways for constructing asymptotic modules are Riemann-Hilbert and ∂̄ problems. When MSIM's are written in terms of the group coordinates, some of them can be contracted into standard integrable models involving a small number of scalar functions only. Simple contractible MSIM's corresponding to one pole, yield the Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy. Two-pole contractible MSIM's are exhibited, which lead to a hierarchy of solvable systems of nonlinear differential equations consisting of (2 + 1) -dimensional evolution equations and of quite strong differential constraints. © 1989 American Institute of Physics. | en |
dc.description.affiliation | Laboratoire de Physique Mathématique Université des Sciences et Techniques du Languedoc, 34060 Montpellier Cedex | |
dc.description.affiliation | Instituto de Física Teórica Universidade Estadual Paulista, Rua Pamplona 145, 01405 São Paulo | |
dc.description.affiliation | Departamento de Métodos Matemáticos de la Física Facultad de Ciencias Físicas Universidad Complutense, 28040, Madrid | |
dc.description.affiliationUnesp | Instituto de Física Teórica Universidade Estadual Paulista, Rua Pamplona 145, 01405 São Paulo | |
dc.format.extent | 1662-1673 | |
dc.identifier | http://dx.doi.org/10.1063/1.528251 | |
dc.identifier.citation | Journal of Mathematical Physics, v. 30, n. 8, p. 1662-1673, 1989. | |
dc.identifier.doi | 10.1063/1.528251 | |
dc.identifier.file | 2-s2.0-36549102431.pdf | |
dc.identifier.issn | 0022-2488 | |
dc.identifier.scopus | 2-s2.0-36549102431 | |
dc.identifier.uri | http://hdl.handle.net/11449/130489 | |
dc.identifier.wos | WOS:A1989AH02700002 | |
dc.language.iso | eng | |
dc.publisher | American Institute of Physics (AIP) | |
dc.relation.ispartof | Journal of Mathematical Physics | |
dc.relation.ispartofjcr | 1.165 | |
dc.relation.ispartofsjr | 0,644 | |
dc.rights.accessRights | Acesso restrito | |
dc.source | Scopus | |
dc.title | Multiseries Lie groups and asymptotic modules for characterizing and solving integrable models | en |
dc.type | Artigo | |
dcterms.license | http://publishing.aip.org/authors/web-posting-guidelines | |
dcterms.rightsHolder | Amer Inst Physics | |
unesp.campus | Universidade Estadual Paulista (Unesp), Instituto de Física Teórica (IFT), São Paulo | pt |