Publicação:
SEMANTIC SEGMENTATION OF VEGETATION IMAGES ACQUIRED BY UNMANNED AERIAL VEHICLES USING AN ENSEMBLE OF CONVNETS

dc.contributor.authorNogueira, Keiller
dc.contributor.authorSantos, Jefersson A. dos
dc.contributor.authorCancian, Leonardo [UNESP]
dc.contributor.authorBorges, Bruno D. [UNESP]
dc.contributor.authorSilva, Thiago S. F. [UNESP]
dc.contributor.authorMorellato, Leonor Patricia [UNESP]
dc.contributor.authorTorres, Ricardo da S.
dc.contributor.authorIEEE
dc.contributor.institutionUniversidade Federal de Minas Gerais (UFMG)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.date.accessioned2018-11-29T09:28:10Z
dc.date.available2018-11-29T09:28:10Z
dc.date.issued2017-01-01
dc.description.abstractVegetation segmentation in high resolution images acquired by unmanned aerial vehicles (UAVs) is a challenging task that requires methods capable of learning high-level features while dealing with fine-grained data. In this paper, we propose a combination of different methods of semantic segmentation based on Convolutional Networks (ConvNets) to obtain highly accurate segmentation of individuals of different vegetation species. The objective is not only to learn specific and adaptable features depending on the data, but also to learn and combine appropriate classifiers. We conducted a systematic evaluation using a high-resolution UAV-based image dataset related to a campo rupestre vegetation in the Brazilian Cerrado biome. Experimental results show that the ensemble technique overcomes all segmentation strategies.en
dc.description.affiliationUniv Fed Minas Gerais, Dept Comp Sci, Belo Horizonte, MG, Brazil
dc.description.affiliationUniv Estadual Paulista, IGCE, Rio Claro, SP, Brazil
dc.description.affiliationUniv Estadual Paulista, IB, Rio Claro, SP, Brazil
dc.description.affiliationUniv Estadual Campinas, Inst Comp, Campinas, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, IGCE, Rio Claro, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, IB, Rio Claro, SP, Brazil
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)
dc.description.sponsorshipIdCNPq: 449638/2014-6
dc.description.sponsorshipIdFAPESP: 2014/12236-1
dc.description.sponsorshipIdFAPESP: 2014/50715-9
dc.description.sponsorshipIdFAPESP: 2013/50155-0
dc.description.sponsorshipIdFAPESP: 2013/50169-1
dc.description.sponsorshipIdFAPEMIG: APQ-00768-14
dc.format.extent3787-3790
dc.identifier.citation2017 Ieee International Geoscience And Remote Sensing Symposium (igarss). New York: Ieee, p. 3787-3790, 2017.
dc.identifier.issn2153-6996
dc.identifier.urihttp://hdl.handle.net/11449/166039
dc.identifier.wosWOS:000426954603221
dc.language.isoeng
dc.publisherIeee
dc.relation.ispartof2017 Ieee International Geoscience And Remote Sensing Symposium (igarss)
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectDeep Learning
dc.subjectSemantic Image Segmentation
dc.subjectUnmanned Aerial Vehicles
dc.subjectPlant Species
dc.titleSEMANTIC SEGMENTATION OF VEGETATION IMAGES ACQUIRED BY UNMANNED AERIAL VEHICLES USING AN ENSEMBLE OF CONVNETSen
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Biociências, Rio Claropt
unesp.departmentBotânica - IBpt

Arquivos