Publicação:
Towards vegetation species discrimination by using data-driven descriptors

dc.contributor.authorNogueira, Keiller
dc.contributor.authorDos Santos, Jefersson A.
dc.contributor.authorFornazari, Tamires [UNESP]
dc.contributor.authorFreire Silva, Thiago Sanna [UNESP]
dc.contributor.authorMorellato, Leonor Patricia [UNESP]
dc.contributor.authorTorres, Ricardo Da S.
dc.contributor.institutionUniversidade Federal de Minas Gerais (UFMG)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.date.accessioned2018-12-11T17:32:01Z
dc.date.available2018-12-11T17:32:01Z
dc.date.issued2017-02-28
dc.description.abstractIn this paper, we analyse the use of Convolutional Neural Networks (CNNs or ConvNets) to discriminate vegetation species with few labelled samples. To the best of our knowledge, this is the first work dedicated to the investigation of the use of deep features in such task. The experimental evaluation demonstrate that deep features significantly outperform wellknown feature extraction techniques. The achieved results also show that it is possible to learn and classify vegetation patterns even with few samples. This makes the use of our approach feasible for real-world mapping applications, where it is often difficult to obtain large training sets.en
dc.description.affiliationDepartment of Computer Science Universidade Federal de Minas Gerais UFMG
dc.description.affiliationSao Paulo State University UNESP
dc.description.affiliationInstitute of Computing University of Campinas UNICAMP
dc.description.affiliationUnespSao Paulo State University UNESP
dc.identifierhttp://dx.doi.org/10.1109/PRRS.2016.7867024
dc.identifier.citation2016 9th IAPR Workshop on Pattern Recognition in Remote Sensing, PRRS 2016.
dc.identifier.doi10.1109/PRRS.2016.7867024
dc.identifier.scopus2-s2.0-85016993939
dc.identifier.urihttp://hdl.handle.net/11449/178769
dc.language.isoeng
dc.relation.ispartof2016 9th IAPR Workshop on Pattern Recognition in Remote Sensing, PRRS 2016
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectDeep Learning
dc.subjectFeature Learning
dc.subjectHigh-resolution Images
dc.subjectImage Classification
dc.subjectMachine Learning
dc.subjectRemote Sensing
dc.titleTowards vegetation species discrimination by using data-driven descriptorsen
dc.typeTrabalho apresentado em evento
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Biociências, Rio Claropt
unesp.departmentBotânica - IBpt

Arquivos